language_model.py 20.4 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer based language model."""

import torch
import torch.nn.functional as F

Mohammad's avatar
Mohammad committed
21
from megatron import get_args
22
from megatron import mpu
23
from .module import MegatronModule
24
from megatron.model.enums import LayerType, AttnMaskType
Mohammad's avatar
Mohammad committed
25
26
from megatron.model.transformer import ParallelTransformer
from megatron.model.utils import get_linear_layer
27
from megatron.model.utils import init_method_normal, scaled_init_method_normal
28
29
30
31
32

def parallel_lm_logits(input_, word_embeddings_weight, parallel_output,
                       bias=None):
    """LM logits using word embedding weights."""
    # Parallel logits.
33
    input_parallel = mpu.copy_to_tensor_model_parallel_region(input_)
34
35
36
37
38
39
40
41
    # Matrix multiply.
    if bias is None:
        logits_parallel = F.linear(input_parallel, word_embeddings_weight)
    else:
        logits_parallel = F.linear(input_parallel, word_embeddings_weight, bias)
    # Gather if needed.
    if parallel_output:
        return logits_parallel
Mohammad's avatar
Mohammad committed
42

43
    return mpu.gather_from_tensor_model_parallel_region(logits_parallel)
Mohammad's avatar
Mohammad committed
44
45


46
def get_language_model(num_tokentypes, add_pooler,
47
                       encoder_attn_mask_type, init_method=None,
48
49
                       scaled_init_method=None, add_encoder=True,
                       add_decoder=False,
50
51
                       decoder_attn_mask_type=AttnMaskType.causal,
                       pre_process=True, post_process=True):
Mohammad's avatar
Mohammad committed
52
    """Build language model and return along with the key to save."""
53
    args = get_args()
Mohammad's avatar
Mohammad committed
54

55
56
57
58
    if init_method is None:
        init_method = init_method_normal(args.init_method_std)

    if scaled_init_method is None:
59
60
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)
61

62
    # Language model.
63
64
65
66
67
    language_model = TransformerLanguageModel(
        init_method,
        scaled_init_method,
        encoder_attn_mask_type,
        num_tokentypes=num_tokentypes,
68
        add_encoder=add_encoder,
69
70
71
72
73
74
        add_decoder=add_decoder,
        decoder_attn_mask_type=decoder_attn_mask_type,
        add_pooler=add_pooler,
        pre_process=pre_process,
        post_process=post_process
    )
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
    # key used for checkpoints.
    language_model_key = 'language_model'

    return language_model, language_model_key


class Pooler(MegatronModule):
    """Pooler layer.

    Pool hidden states of a specific token (for example start of the
    sequence) and add a linear transformation followed by a tanh.

    Arguments:
        hidden_size: hidden size
        init_method: weight initialization method for the linear layer.
            bias is set to zero.
    """
Neel Kant's avatar
Neel Kant committed
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    def __init__(self, hidden_size, init_method):
        super(Pooler, self).__init__()
        self.dense = get_linear_layer(hidden_size, hidden_size, init_method)

    def forward(self, hidden_states, sequence_index=0):
        # hidden_states: [b, s, h]
        # sequence_index: index of the token to pool.
        pooled = hidden_states[:, sequence_index, :]
        pooled = self.dense(pooled)
        pooled = torch.tanh(pooled)
        return pooled


class Embedding(MegatronModule):
    """Language model embeddings.

    Arguments:
        hidden_size: hidden size
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        init_method: weight initialization method
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
    """
Neel Kant's avatar
Neel Kant committed
119

120
121
122
123
124
125
126
127
128
129
130
131
132
    def __init__(self,
                 hidden_size,
                 vocab_size,
                 max_sequence_length,
                 embedding_dropout_prob,
                 init_method,
                 num_tokentypes=0):
        super(Embedding, self).__init__()

        self.hidden_size = hidden_size
        self.init_method = init_method
        self.num_tokentypes = num_tokentypes

133
134
        args = get_args()

135
136
        # Word embeddings (parallel).
        self.word_embeddings = mpu.VocabParallelEmbedding(
137
138
            vocab_size, self.hidden_size,
            init_method=self.init_method)
139
140
141
142
143
144
145
        self._word_embeddings_key = 'word_embeddings'

        # Position embedding (serial).
        self.position_embeddings = torch.nn.Embedding(
            max_sequence_length, self.hidden_size)
        self._position_embeddings_key = 'position_embeddings'
        # Initialize the position embeddings.
146
147
        if args.perform_initialization:
            self.init_method(self.position_embeddings.weight)
148
149
150
151
152
153
154
155
156
157

        # Token type embedding.
        # Add this as an optional field that can be added through
        # method call so we can load a pretrain model without
        # token types and add them as needed.
        self._tokentype_embeddings_key = 'tokentype_embeddings'
        if self.num_tokentypes > 0:
            self.tokentype_embeddings = torch.nn.Embedding(self.num_tokentypes,
                                                           self.hidden_size)
            # Initialize the token-type embeddings.
158
159
            if args.perform_initialization:
                self.init_method(self.tokentype_embeddings.weight)
160
161
162
163
164
165
        else:
            self.tokentype_embeddings = None

        # Embeddings dropout
        self.embedding_dropout = torch.nn.Dropout(embedding_dropout_prob)

166
167
168
    def zero_parameters(self):
        """Zero out all parameters in embedding."""
        self.word_embeddings.weight.data.fill_(0)
Deepak Narayanan's avatar
Deepak Narayanan committed
169
        self.word_embeddings.weight.shared = True
170
        self.position_embeddings.weight.data.fill_(0)
Deepak Narayanan's avatar
Deepak Narayanan committed
171
        self.position_embeddings.weight.shared = True
172
173
        if self.num_tokentypes > 0:
            self.tokentype_embeddings.weight.data.fill_(0)
Deepak Narayanan's avatar
Deepak Narayanan committed
174
            self.tokentype_embeddings.weight.shared = True
175

176
177
178
179
180
181
182
183
184
185
186
187
188
189
    def add_tokentype_embeddings(self, num_tokentypes):
        """Add token-type embedding. This function is provided so we can add
        token-type embeddings in case the pretrained model does not have it.
        This allows us to load the model normally and then add this embedding.
        """
        if self.tokentype_embeddings is not None:
            raise Exception('tokentype embeddings is already initialized')
        if torch.distributed.get_rank() == 0:
            print('adding embedding for {} tokentypes'.format(num_tokentypes),
                  flush=True)
        self.num_tokentypes = num_tokentypes
        self.tokentype_embeddings = torch.nn.Embedding(num_tokentypes,
                                                       self.hidden_size)
        # Initialize the token-type embeddings.
190
        args = get_args()
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
        self.init_method(self.tokentype_embeddings.weight)

    def forward(self, input_ids, position_ids, tokentype_ids=None):
        # Embeddings.
        words_embeddings = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        embeddings = words_embeddings + position_embeddings
        if tokentype_ids is not None:
            assert self.tokentype_embeddings is not None
            embeddings = embeddings + self.tokentype_embeddings(tokentype_ids)
        else:
            assert self.tokentype_embeddings is None

        # Dropout.
        embeddings = self.embedding_dropout(embeddings)

        return embeddings

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load."""

        state_dict_ = {}
        state_dict_[self._word_embeddings_key] \
            = self.word_embeddings.state_dict(destination, prefix, keep_vars)
        state_dict_[self._position_embeddings_key] \
            = self.position_embeddings.state_dict(
                destination, prefix, keep_vars)
        if self.num_tokentypes > 0:
            state_dict_[self._tokentype_embeddings_key] \
                = self.tokentype_embeddings.state_dict(
                    destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Word embedding.
        if self._word_embeddings_key in state_dict:
            state_dict_ = state_dict[self._word_embeddings_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'word_embeddings' in key:
                    state_dict_[key.split('word_embeddings.')[1]] \
                        = state_dict[key]
        self.word_embeddings.load_state_dict(state_dict_, strict=strict)

        # Position embedding.
        if self._position_embeddings_key in state_dict:
            state_dict_ = state_dict[self._position_embeddings_key]
        else:
            # for backward compatibility.
            state_dict_ = {}
            for key in state_dict.keys():
                if 'position_embeddings' in key:
                    state_dict_[key.split('position_embeddings.')[1]] \
                        = state_dict[key]
        self.position_embeddings.load_state_dict(state_dict_, strict=strict)

        # Tokentype embedding.
Neel Kant's avatar
Neel Kant committed
254
        if self.num_tokentypes > 0:
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
            state_dict_ = {}
            if self._tokentype_embeddings_key in state_dict:
                state_dict_ = state_dict[self._tokentype_embeddings_key]
            else:
                # for backward compatibility.
                for key in state_dict.keys():
                    if 'tokentype_embeddings' in key:
                        state_dict_[key.split('tokentype_embeddings.')[1]] \
                            = state_dict[key]
            if len(state_dict_.keys()) > 0:
                self.tokentype_embeddings.load_state_dict(state_dict_,
                                                          strict=strict)
            else:
                print('***WARNING*** expected tokentype embeddings in the '
                      'checkpoint but could not find it', flush=True)


272
class TransformerLanguageModel(MegatronModule):
273
274
275
276
277
278
279
280
281
282
283
    """Transformer language model.

    Arguments:
        transformer_hparams: transformer hyperparameters
        vocab_size: vocabulary size
        max_sequence_length: maximum size of sequence. This
                             is used for positional embedding
        embedding_dropout_prob: dropout probability for embeddings
        num_tokentypes: size of the token-type embeddings. 0 value
                        will ignore this embedding
    """
Neel Kant's avatar
Neel Kant committed
284

285
    def __init__(self,
Mohammad's avatar
Mohammad committed
286
287
                 init_method,
                 output_layer_init_method,
288
                 encoder_attn_mask_type,
289
                 num_tokentypes=0,
290
                 add_encoder=True,
291
                 add_decoder=False,
292
                 decoder_attn_mask_type=AttnMaskType.causal,
293
294
295
296
                 add_pooler=False,
                 pre_process=True,
                 post_process=True):
        super(TransformerLanguageModel, self).__init__()
Mohammad's avatar
Mohammad committed
297
        args = get_args()
298

299
300
        self.pre_process = pre_process
        self.post_process = post_process
Mohammad's avatar
Mohammad committed
301
        self.hidden_size = args.hidden_size
302
        self.num_tokentypes = num_tokentypes
Mohammad's avatar
Mohammad committed
303
        self.init_method = init_method
304
        self.add_encoder = add_encoder
305
        self.encoder_attn_mask_type = encoder_attn_mask_type
306
        self.add_decoder = add_decoder
307
        self.decoder_attn_mask_type = decoder_attn_mask_type
308
        self.add_pooler = add_pooler
309
        self.encoder_hidden_state = None
310

311
        # Embeddings.
312
        if self.pre_process:
313
314
315
316
317
318
319
            self.embedding = Embedding(self.hidden_size,
                                       args.padded_vocab_size,
                                       args.max_position_embeddings,
                                       args.hidden_dropout,
                                       self.init_method,
                                       self.num_tokentypes)
            self._embedding_key = 'embedding'
320

321
        # Transformer.
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
        # Encoder (usually set to True, False if part of an encoder-decoder
        # architecture and in encoder-only stage).
        if self.add_encoder:
            self.encoder = ParallelTransformer(
                self.init_method,
                output_layer_init_method,
                self_attn_mask_type=self.encoder_attn_mask_type,
                pre_process=self.pre_process,
                post_process=self.post_process
            )
            self._encoder_key = 'encoder'
        else:
            self.encoder = None

        # Decoder (usually set to False, True if part of an encoder-decoder
        # architecture and in decoder-only stage).
Vijay Korthikanti's avatar
Vijay Korthikanti committed
338
339
340
341
342
        if self.add_decoder:
            self.decoder = ParallelTransformer(
                self.init_method,
                output_layer_init_method,
                layer_type=LayerType.decoder,
343
344
345
                self_attn_mask_type=self.decoder_attn_mask_type,
                pre_process=self.pre_process,
                post_process=self.post_process)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
346
            self._decoder_key = 'decoder'
347
348
        else:
            self.decoder = None
349

350
        if self.post_process:
351
352
353
354
355
            # Pooler.
            if self.add_pooler:
                self.pooler = Pooler(self.hidden_size, self.init_method)
                self._pooler_key = 'pooler'

356
    def set_input_tensor(self, input_tensor):
357
        """ See megatron.model.transformer.set_input_tensor()"""
358
359
360
361
362
363

        # This is usually handled in schedules.py but some inference code still
        # gives us non-lists or None
        if not isinstance(input_tensor, list):
            input_tensor = [input_tensor]

364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        if self.add_encoder and self.add_decoder:
            assert len(input_tensor) == 1, \
                'input_tensor should only be length 1 for stage with both encoder and decoder'
            self.encoder.set_input_tensor(input_tensor[0])
        elif self.add_encoder:
            assert len(input_tensor) == 1, \
                'input_tensor should only be length 1 for stage with only encoder'
            self.encoder.set_input_tensor(input_tensor[0])
        elif self.add_decoder:
            if len(input_tensor) == 2:
                self.decoder.set_input_tensor(input_tensor[0])
                self.encoder_hidden_state = input_tensor[1]
            elif len(input_tensor) == 1:
                self.decoder.set_input_tensor(None)
                self.encoder_hidden_state = input_tensor[0]
            else:
                raise Exception('input_tensor must have either length 1 or 2')
        else:
            raise Exception('Stage must have at least either encoder or decoder')
383
384
385

    def forward(self, enc_input_ids, enc_position_ids, enc_attn_mask,
                dec_input_ids=None, dec_position_ids=None, dec_attn_mask=None,
386
                enc_dec_attn_mask=None, tokentype_ids=None,
mshoeybi's avatar
mshoeybi committed
387
                inference_params=None,
388
                pooling_sequence_index=0,
389
                enc_hidden_states=None, output_enc_hidden=False):
390

391
        # Encoder embedding.
392
        if self.pre_process:
393
394
            encoder_input = self.embedding(enc_input_ids, enc_position_ids,
                                           tokentype_ids=tokentype_ids)
395
        else:
396
            encoder_input = None
397

398
        # Run encoder.
399
        if enc_hidden_states is None:
400
            if self.encoder is not None:
401
402
403
                encoder_output = self.encoder(
                    encoder_input,
                    enc_attn_mask,
mshoeybi's avatar
mshoeybi committed
404
                    inference_params=inference_params)
405
406
            else:
                encoder_output = self.encoder_hidden_state
407
408
409
        else:
            encoder_output = enc_hidden_states.to(encoder_input.dtype)

410
        if self.post_process:
411
412
413
414
            if self.add_pooler:
                pooled_output = self.pooler(encoder_output,
                                            pooling_sequence_index)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
415
416
417
418
        # output_enc_hidden refers to when we just need the encoder's
        # output. For example, it is helpful to compute
        # similarity between two sequences by average pooling
        if not self.add_decoder or output_enc_hidden:
419
            if self.add_pooler and self.post_process:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
420
                return encoder_output, pooled_output
421
            else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
422
423
                return encoder_output

424
425
426
427
428
429
430
431
        # Decoder embedding.
        if self.pre_process:
            decoder_input = self.embedding(dec_input_ids,
                                           dec_position_ids)
        else:
            decoder_input = None

        # Run decoder.
432
        decoder_output = self.decoder(
433
            decoder_input,
434
435
436
            dec_attn_mask,
            encoder_output=encoder_output,
            enc_dec_attn_mask=enc_dec_attn_mask,
mshoeybi's avatar
mshoeybi committed
437
            inference_params=inference_params)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
438

439
        if self.add_pooler and self.post_process:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
440
441
442
            return decoder_output, encoder_output, pooled_output
        else:
            return decoder_output, encoder_output
443
444
445
446
447
448

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load."""

        state_dict_ = {}
449
        if self.pre_process:
450
451
452
            state_dict_[self._embedding_key] \
                = self.embedding.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
453
454
455
456
        if self.add_encoder:
            state_dict_[self._encoder_key] \
                = self.encoder.state_dict_for_save_checkpoint(
                    destination, prefix, keep_vars)
457
        if self.post_process:
458
459
460
461
            if self.add_pooler:
                state_dict_[self._pooler_key] \
                    = self.pooler.state_dict_for_save_checkpoint(
                        destination, prefix, keep_vars)
462
463
464
        if self.add_decoder:
            state_dict_[self._decoder_key] \
                = self.decoder.state_dict_for_save_checkpoint(
465
466
467
468
469
470
471
472
                    destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""

        # Embedding.
473
        if self.pre_process:
474
475
476
477
478
479
480
481
482
            if self._embedding_key in state_dict:
                state_dict_ = state_dict[self._embedding_key]
            else:
                # for backward compatibility.
                state_dict_ = {}
                for key in state_dict.keys():
                    if '_embeddings' in key:
                        state_dict_[key] = state_dict[key]
            self.embedding.load_state_dict(state_dict_, strict=strict)
483

484
        # Encoder.
485
486
487
488
489
490
        if self.add_encoder:
            if self._encoder_key in state_dict:
                state_dict_ = state_dict[self._encoder_key]
            # For backward compatibility.
            elif 'transformer' in state_dict:
                state_dict_ = state_dict['transformer']
491
            else:
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
                # For backward compatibility.
                state_dict_ = {}
                for key in state_dict.keys():
                    if 'transformer.' in key:
                        state_dict_[key.split('transformer.')[1]] = state_dict[key]

            # For backward compatibility.
            state_dict_self_attention = {}
            for key in state_dict_.keys():
                if '.attention.' in key:
                    state_dict_self_attention[key.replace(".attention.",
                        ".self_attention.")] = state_dict_[key]
                else:
                    state_dict_self_attention[key] = state_dict_[key]
            state_dict_ = state_dict_self_attention

            self.encoder.load_state_dict(state_dict_, strict=strict)

        # Pooler.
511
        if self.post_process:
512
513
514
515
516
            if self.add_pooler:
                assert 'pooler' in state_dict, \
                    'could not find data for pooler in the checkpoint'
                self.pooler.load_state_dict(state_dict[self._pooler_key],
                                            strict=strict)
517
        # Decoder.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
518
519
        if self.add_decoder:
            assert 'decoder' in state_dict, \
520
                'could not find data for pooler in the checkpoint'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
521
522
            self.decoder.load_state_dict(state_dict[self._decoder_key],
                                         strict=strict)