bert_tokenization.py 14.3 KB
Newer Older
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
16
17
18
19
20
21
22
23
24
25
26
27
28
"""Tokenization classes."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import re
import unicodedata
import six


def validate_case_matches_checkpoint(do_lower_case, init_checkpoint):
Neel Kant's avatar
Neel Kant committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    """Checks whether the casing config is consistent with the checkpoint name."""

    # The casing has to be passed in by the user and there is no explicit check
    # as to whether it matches the checkpoint. The casing information probably
    # should have been stored in the bert_config.json file, but it's not, so
    # we have to heuristically detect it to validate.

    if not init_checkpoint:
        return

    m = re.match("^.*?([A-Za-z0-9_-]+)/bert_model.ckpt", init_checkpoint)
    if m is None:
        return

    model_name = m.group(1)

    lower_models = [
        "uncased_L-24_H-1024_A-16", "uncased_L-12_H-768_A-12",
        "multilingual_L-12_H-768_A-12", "chinese_L-12_H-768_A-12"
    ]

    cased_models = [
        "cased_L-12_H-768_A-12", "cased_L-24_H-1024_A-16",
        "multi_cased_L-12_H-768_A-12"
    ]

    is_bad_config = False
    if model_name in lower_models and not do_lower_case:
        is_bad_config = True
        actual_flag = "False"
        case_name = "lowercased"
        opposite_flag = "True"

    if model_name in cased_models and do_lower_case:
        is_bad_config = True
        actual_flag = "True"
        case_name = "cased"
        opposite_flag = "False"

    if is_bad_config:
        raise ValueError(
            "You passed in `--do_lower_case=%s` with `--init_checkpoint=%s`. "
            "However, `%s` seems to be a %s model, so you "
            "should pass in `--do_lower_case=%s` so that the fine-tuning matches "
            "how the model was pre-training. If this error is wrong, please "
            "just comment out this check." % (actual_flag, init_checkpoint,
                                              model_name, case_name, opposite_flag))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
76
77
78


def convert_to_unicode(text):
Neel Kant's avatar
Neel Kant committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    """Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
    if six.PY3:
        if isinstance(text, str):
            return text
        elif isinstance(text, bytes):
            return text.decode("utf-8", "ignore")
        else:
            raise ValueError("Unsupported string type: %s" % (type(text)))
    elif six.PY2:
        if isinstance(text, str):
            return text.decode("utf-8", "ignore")
        elif isinstance(text, unicode):
            return text
        else:
            raise ValueError("Unsupported string type: %s" % (type(text)))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
94
    else:
Neel Kant's avatar
Neel Kant committed
95
        raise ValueError("Not running on Python2 or Python 3?")
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
96
97
98


def printable_text(text):
Neel Kant's avatar
Neel Kant committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    """Returns text encoded in a way suitable for print or `tf.logging`."""

    # These functions want `str` for both Python2 and Python3, but in one case
    # it's a Unicode string and in the other it's a byte string.
    if six.PY3:
        if isinstance(text, str):
            return text
        elif isinstance(text, bytes):
            return text.decode("utf-8", "ignore")
        else:
            raise ValueError("Unsupported string type: %s" % (type(text)))
    elif six.PY2:
        if isinstance(text, str):
            return text
        elif isinstance(text, unicode):
            return text.encode("utf-8")
        else:
            raise ValueError("Unsupported string type: %s" % (type(text)))
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
117
    else:
Neel Kant's avatar
Neel Kant committed
118
        raise ValueError("Not running on Python2 or Python 3?")
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
119
120
121


def load_vocab(vocab_file):
Neel Kant's avatar
Neel Kant committed
122
123
124
125
126
127
128
129
130
131
132
133
    """Loads a vocabulary file into a dictionary."""
    vocab = collections.OrderedDict()
    index = 0
    with open(vocab_file, "r") as reader:
        while True:
            token = convert_to_unicode(reader.readline())
            if not token:
                break
            token = token.strip()
            vocab[token] = index
            index += 1
    return vocab
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
134
135
136


def convert_by_vocab(vocab, items):
Neel Kant's avatar
Neel Kant committed
137
138
139
140
141
    """Converts a sequence of [tokens|ids] using the vocab."""
    output = []
    for item in items:
        output.append(vocab[item])
    return output
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
142
143
144


def convert_tokens_to_ids(vocab, tokens):
Neel Kant's avatar
Neel Kant committed
145
    return convert_by_vocab(vocab, tokens)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
146
147
148


def convert_ids_to_tokens(inv_vocab, ids):
Neel Kant's avatar
Neel Kant committed
149
    return convert_by_vocab(inv_vocab, ids)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
150
151
152


def whitespace_tokenize(text):
Neel Kant's avatar
Neel Kant committed
153
154
155
156
157
158
    """Runs basic whitespace cleaning and splitting on a piece of text."""
    text = text.strip()
    if not text:
        return []
    tokens = text.split()
    return tokens
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
159
160
161


class FullTokenizer(object):
Neel Kant's avatar
Neel Kant committed
162
    """Runs end-to-end tokenziation."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
163

Neel Kant's avatar
Neel Kant committed
164
165
166
167
168
    def __init__(self, vocab_file, do_lower_case=True):
        self.vocab = load_vocab(vocab_file)
        self.inv_vocab = {v: k for k, v in self.vocab.items()}
        self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
        self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
169

Neel Kant's avatar
Neel Kant committed
170
171
172
173
174
    def tokenize(self, text):
        split_tokens = []
        for token in self.basic_tokenizer.tokenize(text):
            for sub_token in self.wordpiece_tokenizer.tokenize(token):
                split_tokens.append(sub_token)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
175

Neel Kant's avatar
Neel Kant committed
176
        return split_tokens
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
177

Neel Kant's avatar
Neel Kant committed
178
179
    def convert_tokens_to_ids(self, tokens):
        return convert_by_vocab(self.vocab, tokens)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
180

Neel Kant's avatar
Neel Kant committed
181
182
    def convert_ids_to_tokens(self, ids):
        return convert_by_vocab(self.inv_vocab, ids)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
183

Mostofa Patwary's avatar
Mostofa Patwary committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    @staticmethod
    def convert_tokens_to_string(tokens, clean_up_tokenization_spaces=True):
        """ Converts a sequence of tokens (string) in a single string. """

        def clean_up_tokenization(out_string):
            """ Clean up a list of simple English tokenization artifacts
            like spaces before punctuations and abreviated forms.
            """
            out_string = (
                out_string.replace(" .", ".")
                    .replace(" ?", "?")
                    .replace(" !", "!")
                    .replace(" ,", ",")
                    .replace(" ' ", "'")
                    .replace(" n't", "n't")
                    .replace(" 'm", "'m")
                    .replace(" 's", "'s")
                    .replace(" 've", "'ve")
                    .replace(" 're", "'re")
            )
            return out_string

        text = ' '.join(tokens).replace(' ##', '').strip()
        if clean_up_tokenization_spaces:
            clean_text = clean_up_tokenization(text)
            return clean_text
        else:
            return text

Neel Kant's avatar
Neel Kant committed
213
214
    def vocab_size(self):
        return len(self.vocab)
215

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
216
217

class BasicTokenizer(object):
Neel Kant's avatar
Neel Kant committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""

    def __init__(self, do_lower_case=True):
        """Constructs a BasicTokenizer.

        Args:
          do_lower_case: Whether to lower case the input.
        """
        self.do_lower_case = do_lower_case

    def tokenize(self, text):
        """Tokenizes a piece of text."""
        text = convert_to_unicode(text)
        text = self._clean_text(text)

        # This was added on November 1st, 2018 for the multilingual and Chinese
        # models. This is also applied to the English models now, but it doesn't
        # matter since the English models were not trained on any Chinese data
        # and generally don't have any Chinese data in them (there are Chinese
        # characters in the vocabulary because Wikipedia does have some Chinese
        # words in the English Wikipedia.).
        text = self._tokenize_chinese_chars(text)

        orig_tokens = whitespace_tokenize(text)
        split_tokens = []
        for token in orig_tokens:
            if self.do_lower_case:
                token = token.lower()
                token = self._run_strip_accents(token)
            split_tokens.extend(self._run_split_on_punc(token))

        output_tokens = whitespace_tokenize(" ".join(split_tokens))
        return output_tokens

    def _run_strip_accents(self, text):
        """Strips accents from a piece of text."""
        text = unicodedata.normalize("NFD", text)
        output = []
        for char in text:
            cat = unicodedata.category(char)
            if cat == "Mn":
                continue
            output.append(char)
        return "".join(output)

    def _run_split_on_punc(self, text):
        """Splits punctuation on a piece of text."""
        chars = list(text)
        i = 0
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
267
        start_new_word = True
Neel Kant's avatar
Neel Kant committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
        output = []
        while i < len(chars):
            char = chars[i]
            if _is_punctuation(char):
                output.append([char])
                start_new_word = True
            else:
                if start_new_word:
                    output.append([])
                start_new_word = False
                output[-1].append(char)
            i += 1

        return ["".join(x) for x in output]

    def _tokenize_chinese_chars(self, text):
        """Adds whitespace around any CJK character."""
        output = []
        for char in text:
            cp = ord(char)
            if self._is_chinese_char(cp):
                output.append(" ")
                output.append(char)
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)

    def _is_chinese_char(self, cp):
        """Checks whether CP is the codepoint of a CJK character."""
        # This defines a "chinese character" as anything in the CJK Unicode block:
        #   https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
        #
        # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
        # despite its name. The modern Korean Hangul alphabet is a different block,
        # as is Japanese Hiragana and Katakana. Those alphabets are used to write
        # space-separated words, so they are not treated specially and handled
        # like the all of the other languages.
        if ((cp >= 0x4E00 and cp <= 0x9FFF) or  #
            (cp >= 0x3400 and cp <= 0x4DBF) or  #
            (cp >= 0x20000 and cp <= 0x2A6DF) or  #
            (cp >= 0x2A700 and cp <= 0x2B73F) or  #
            (cp >= 0x2B740 and cp <= 0x2B81F) or  #
            (cp >= 0x2B820 and cp <= 0x2CEAF) or
            (cp >= 0xF900 and cp <= 0xFAFF) or  #
                (cp >= 0x2F800 and cp <= 0x2FA1F)):  #
            return True

        return False

    def _clean_text(self, text):
        """Performs invalid character removal and whitespace cleanup on text."""
        output = []
        for char in text:
            cp = ord(char)
            if cp == 0 or cp == 0xfffd or _is_control(char):
                continue
            if _is_whitespace(char):
                output.append(" ")
            else:
                output.append(char)
        return "".join(output)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
330
331
332


class WordpieceTokenizer(object):
Neel Kant's avatar
Neel Kant committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    """Runs WordPiece tokenziation."""

    def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=200):
        self.vocab = vocab
        self.unk_token = unk_token
        self.max_input_chars_per_word = max_input_chars_per_word

    def tokenize(self, text):
        """Tokenizes a piece of text into its word pieces.

        This uses a greedy longest-match-first algorithm to perform tokenization
        using the given vocabulary.

        For example:
          input = "unaffable"
          output = ["un", "##aff", "##able"]

        Args:
          text: A single token or whitespace separated tokens. This should have
            already been passed through `BasicTokenizer.

        Returns:
          A list of wordpiece tokens.
        """

        text = convert_to_unicode(text)

        output_tokens = []
        for token in whitespace_tokenize(text):
            chars = list(token)
            if len(chars) > self.max_input_chars_per_word:
                output_tokens.append(self.unk_token)
                continue

            is_bad = False
            start = 0
            sub_tokens = []
            while start < len(chars):
                end = len(chars)
                cur_substr = None
                while start < end:
                    substr = "".join(chars[start:end])
                    if start > 0:
                        substr = "##" + substr
                    if substr in self.vocab:
                        cur_substr = substr
                        break
                    end -= 1
                if cur_substr is None:
                    is_bad = True
                    break
                sub_tokens.append(cur_substr)
                start = end

            if is_bad:
                output_tokens.append(self.unk_token)
            else:
                output_tokens.extend(sub_tokens)
        return output_tokens
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
392
393
394


def _is_whitespace(char):
Neel Kant's avatar
Neel Kant committed
395
396
397
398
399
400
401
402
403
    """Checks whether `chars` is a whitespace character."""
    # \t, \n, and \r are technically contorl characters but we treat them
    # as whitespace since they are generally considered as such.
    if char == " " or char == "\t" or char == "\n" or char == "\r":
        return True
    cat = unicodedata.category(char)
    if cat == "Zs":
        return True
    return False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
404
405
406


def _is_control(char):
Neel Kant's avatar
Neel Kant committed
407
408
409
410
411
412
413
414
    """Checks whether `chars` is a control character."""
    # These are technically control characters but we count them as whitespace
    # characters.
    if char == "\t" or char == "\n" or char == "\r":
        return False
    cat = unicodedata.category(char)
    if cat in ("Cc", "Cf"):
        return True
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
415
416
417
418
    return False


def _is_punctuation(char):
Neel Kant's avatar
Neel Kant committed
419
420
421
422
423
424
425
426
427
428
429
430
431
    """Checks whether `chars` is a punctuation character."""
    cp = ord(char)
    # We treat all non-letter/number ASCII as punctuation.
    # Characters such as "^", "$", and "`" are not in the Unicode
    # Punctuation class but we treat them as punctuation anyways, for
    # consistency.
    if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
            (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
        return True
    cat = unicodedata.category(char)
    if cat.startswith("P"):
        return True
    return False