pretrain_gpt.py 3.73 KB
Newer Older
liangjing's avatar
v1  
liangjing committed
1
# Copyright (c) 2023, NVIDIA CORPORATION.  All rights reserved.
2

3
"""Pretrain GPT"""
4
5

import torch
6
from functools import partial
Neel Kant's avatar
Neel Kant committed
7
8
from megatron import get_args
from megatron import print_rank_0
Mohammad's avatar
Mohammad committed
9
from megatron import get_timers
Mohammad's avatar
Mohammad committed
10
from megatron import get_tokenizer
11
from megatron.core import tensor_parallel
12
from megatron.core.enums import ModelType
13
from megatron.data.gpt_dataset import build_train_valid_test_datasets
14
from megatron.model import GPTModel
Mohammad's avatar
Mohammad committed
15
from megatron.training import pretrain
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
16
from megatron.utils import get_ltor_masks_and_position_ids
17
from megatron.utils import average_losses_across_data_parallel_group
liangjing's avatar
v1  
liangjing committed
18
from megatron.arguments import core_transformer_config_from_args
Mohammad's avatar
Mohammad committed
19

20
def model_provider(pre_process=True, post_process=True):
21
22
    """Build the model."""

23
    print_rank_0('building GPT model ...')
liangjing's avatar
v1  
liangjing committed
24
    config = core_transformer_config_from_args(get_args())
25
    model = GPTModel(
liangjing's avatar
v1  
liangjing committed
26
        config,
27
28
29
30
31
        num_tokentypes=0,
        parallel_output=True,
        pre_process=pre_process,
        post_process=post_process
    )
32
33
34
    return model


Mohammad's avatar
Mohammad committed
35
def get_batch(data_iterator):
36
    """Generate a batch"""
Mohammad's avatar
Mohammad committed
37
    args = get_args()
Mohammad's avatar
Mohammad committed
38
    tokenizer = get_tokenizer()
39

40
41
42
43
44
45
46
47
48
    # Items and their type.
    keys = ['text']
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is not None:
        data = next(data_iterator)
    else:
        data = None
49
    data_b = tensor_parallel.broadcast_data(keys, data, datatype)
50
51
52
53
54
55
56

    # Unpack.
    tokens_ = data_b['text'].long()
    labels = tokens_[:, 1:].contiguous()
    tokens = tokens_[:, :-1].contiguous()

    # Get the masks and postition ids.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
57
    attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
58
        tokens,
Mohammad's avatar
Mohammad committed
59
        tokenizer.eod,
60
        args.reset_position_ids,
61
        args.reset_attention_mask,
62
        args.eod_mask_loss)
63
64
65

    return tokens, labels, loss_mask, attention_mask, position_ids

66
67
68
69
def loss_func(loss_mask, output_tensor):
    losses = output_tensor.float()
    loss_mask = loss_mask.view(-1).float()
    loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
70

71
72
73
74
75
76
77
    # Reduce loss for logging.
    averaged_loss = average_losses_across_data_parallel_group([loss])

    return loss, {'lm loss': averaged_loss[0]}


def forward_step(data_iterator, model):
78
    """Forward step."""
79
    args = get_args()
Mohammad's avatar
Mohammad committed
80
    timers = get_timers()
81
82

    # Get the batch.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
83
    timers('batch-generator', log_level=2).start()
84
    tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
Mohammad's avatar
Mohammad committed
85
        data_iterator)
mohammad's avatar
mohammad committed
86
    timers('batch-generator').stop()
87

88
89
    output_tensor = model(tokens, position_ids, attention_mask,
                          labels=labels)
90

91
    return output_tensor, partial(loss_func, loss_mask)
92
93


94
95
def train_valid_test_datasets_provider(train_val_test_num_samples):
    """Build train, valid, and test datasets."""
Mohammad's avatar
Mohammad committed
96
    args = get_args()
Mohammad's avatar
Mohammad committed
97

98
    print_rank_0('> building train, validation, and test datasets '
99
                 'for GPT ...')
100
101
102
103
104
105
106
    train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
        data_prefix=args.data_path,
        data_impl=args.data_impl,
        splits_string=args.split,
        train_valid_test_num_samples=train_val_test_num_samples,
        seq_length=args.seq_length,
        seed=args.seed,
107
108
109
        skip_warmup=(not args.mmap_warmup),
        train_data_prefix=args.train_data_path,
        valid_data_prefix=args.valid_data_path,
liangjing's avatar
v1  
liangjing committed
110
111
        test_data_prefix=args.test_data_path,
        data_cache_path=args.data_cache_path)
112
    print_rank_0("> finished creating GPT datasets ...")
113

114
    return train_ds, valid_ds, test_ds
115
116
117


if __name__ == "__main__":
118

liangjing's avatar
v1  
liangjing committed
119
120
    pretrain(train_valid_test_datasets_provider,
             model_provider,
121
             ModelType.encoder_or_decoder,
122
             forward_step,
liangjing's avatar
v1  
liangjing committed
123
             args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})