realm_model.py 7.81 KB
Newer Older
1
import os
2
3
import torch

4
from megatron import get_args
Neel Kant's avatar
Neel Kant committed
5
from megatron.checkpointing import get_checkpoint_tracker_filename, get_checkpoint_name
6
7
from megatron.model import BertModel
from megatron.module import MegatronModule
8
from megatron import mpu
9
10
11
12
13
14
15
from megatron.model.utils import get_linear_layer
from megatron.model.utils import init_method_normal
from megatron.model.language_model import get_language_model
from megatron.model.utils import scaled_init_method_normal
from megatron.model.utils import bert_attention_mask_func
from megatron.model.utils import bert_extended_attention_mask
from megatron.model.utils import bert_position_ids
16
17
18
19
20
21
22
23
24
25
26


class ICTBertModel(MegatronModule):
    """Bert-based module for Inverse Cloze task."""
    def __init__(self,
                 ict_head_size,
                 num_tokentypes=1,
                 parallel_output=True,
                 only_query_model=False,
                 only_block_model=False):
        super(ICTBertModel, self).__init__()
27
        bert_kwargs = dict(
28
            ict_head_size=ict_head_size,
29
            num_tokentypes=num_tokentypes,
30
31
32
33
34
35
36
37
            parallel_output=parallel_output
        )
        assert not (only_block_model and only_query_model)
        self.use_block_model = not only_query_model
        self.use_query_model = not only_block_model

        if self.use_query_model:
            # this model embeds (pseudo-)queries - Embed_input in the paper
38
            self.query_model = IREncoderBertModel(**bert_kwargs)
39
40
41
42
            self._query_key = 'question_model'

        if self.use_block_model:
            # this model embeds evidence blocks - Embed_doc in the paper
43
            self.block_model = IREncoderBertModel(**bert_kwargs)
44
45
            self._block_key = 'context_model'

Neel Kant's avatar
Neel Kant committed
46
47
    def forward(self, query_tokens, query_attention_mask, block_tokens, block_attention_mask):
        """Run a forward pass for each of the models and return the respective embeddings."""
48
49
        query_logits = self.embed_query(query_tokens, query_attention_mask)
        block_logits = self.embed_block(block_tokens, block_attention_mask)
Neel Kant's avatar
Neel Kant committed
50
        return query_logits, block_logits
51
52
53
54

    def embed_query(self, query_tokens, query_attention_mask):
        """Embed a batch of tokens using the query model"""
        if self.use_query_model:
55
            query_types = torch.cuda.LongTensor(*query_tokens.shape).fill_(0)
56
57
58
59
60
61
62
63
            query_ict_logits, _ = self.query_model.forward(query_tokens, query_attention_mask, query_types)
            return query_ict_logits
        else:
            raise ValueError("Cannot embed query without query model.")

    def embed_block(self, block_tokens, block_attention_mask):
        """Embed a batch of tokens using the block model"""
        if self.use_block_model:
64
            block_types = torch.cuda.LongTensor(*block_tokens.shape).fill_(0)
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
            block_ict_logits, _ = self.block_model.forward(block_tokens, block_attention_mask, block_types)
            return block_ict_logits
        else:
            raise ValueError("Cannot embed block without block model.")

    def state_dict_for_save_checkpoint(self, destination=None, prefix='', keep_vars=False):
        """Save dict with state dicts of each of the models."""
        state_dict_ = {}
        if self.use_query_model:
            state_dict_[self._query_key] \
                = self.query_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)

        if self.use_block_model:
            state_dict_[self._block_key] \
                = self.block_model.state_dict_for_save_checkpoint(
                destination, prefix, keep_vars)

        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Load the state dicts of each of the models"""
        if self.use_query_model:
            print("Loading ICT query model", flush=True)
            self.query_model.load_state_dict(
                state_dict[self._query_key], strict=strict)

        if self.use_block_model:
            print("Loading ICT block model", flush=True)
            self.block_model.load_state_dict(
                state_dict[self._block_key], strict=strict)
Neel Kant's avatar
Neel Kant committed
96
97

    def init_state_dict_from_bert(self):
98
        """Initialize the state from a pretrained BERT model on iteration zero of ICT pretraining"""
Neel Kant's avatar
Neel Kant committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        args = get_args()
        tracker_filename = get_checkpoint_tracker_filename(args.bert_load)
        if not os.path.isfile(tracker_filename):
            raise FileNotFoundError("Could not find BERT load for ICT")
        with open(tracker_filename, 'r') as f:
            iteration = int(f.read().strip())
            assert iteration > 0

        checkpoint_name = get_checkpoint_name(args.bert_load, iteration, False)
        if mpu.get_data_parallel_rank() == 0:
            print('global rank {} is loading checkpoint {}'.format(
                torch.distributed.get_rank(), checkpoint_name))

        try:
            state_dict = torch.load(checkpoint_name, map_location='cpu')
        except BaseException:
            raise ValueError("Could not load checkpoint")

117
        # load the LM state dict into each model
Neel Kant's avatar
Neel Kant committed
118
119
120
        model_dict = state_dict['model']['language_model']
        self.query_model.language_model.load_state_dict(model_dict)
        self.block_model.language_model.load_state_dict(model_dict)
121
122

        # give each model the same ict_head to begin with as well
Neel Kant's avatar
Neel Kant committed
123
124
        query_ict_head_state_dict = self.state_dict_for_save_checkpoint()[self._query_key]['ict_head']
        self.block_model.ict_head.load_state_dict(query_ict_head_state_dict)
125
126
127


class IREncoderBertModel(MegatronModule):
128
    """BERT-based encoder for queries or blocks used for learned information retrieval."""
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    def __init__(self, ict_head_size, num_tokentypes=2, parallel_output=True):
        super(IREncoderBertModel, self).__init__()
        args = get_args()

        self.ict_head_size = ict_head_size
        self.parallel_output = parallel_output
        init_method = init_method_normal(args.init_method_std)
        scaled_init_method = scaled_init_method_normal(args.init_method_std,
                                                       args.num_layers)

        self.language_model, self._language_model_key = get_language_model(
            attention_mask_func=bert_attention_mask_func,
            num_tokentypes=num_tokentypes,
            add_pooler=True,
            init_method=init_method,
            scaled_init_method=scaled_init_method)

        self.ict_head = get_linear_layer(args.hidden_size, ict_head_size, init_method)
        self._ict_head_key = 'ict_head'

    def forward(self, input_ids, attention_mask, tokentype_ids=None):
        extended_attention_mask = bert_extended_attention_mask(
            attention_mask, next(self.language_model.parameters()).dtype)
        position_ids = bert_position_ids(input_ids)

        lm_output, pooled_output = self.language_model(
            input_ids,
            position_ids,
            extended_attention_mask,
            tokentype_ids=tokentype_ids)

        # Output.
161
162
        ict_logits = self.ict_head(pooled_output)
        return ict_logits, None
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

    def state_dict_for_save_checkpoint(self, destination=None, prefix='',
                                       keep_vars=False):
        """For easy load when model is combined with other heads,
        add an extra key."""

        state_dict_ = {}
        state_dict_[self._language_model_key] \
            = self.language_model.state_dict_for_save_checkpoint(
            destination, prefix, keep_vars)
        state_dict_[self._ict_head_key] \
            = self.ict_head.state_dict(destination, prefix, keep_vars)
        return state_dict_

    def load_state_dict(self, state_dict, strict=True):
        """Customized load."""
        self.language_model.load_state_dict(
            state_dict[self._language_model_key], strict=strict)
        self.ict_head.load_state_dict(
            state_dict[self._ict_head_key], strict=strict)