realm_dataset_utils.py 7.38 KB
Newer Older
1
2
3
4
5
6
import os
import time

import numpy as np
import torch

7
8
from megatron import print_rank_0
from megatron.core import mpu, tensor_parallel
9
from megatron.data.dataset_utils import create_masked_lm_predictions, pad_and_convert_to_numpy
10
from megatron import get_args, get_tokenizer, print_rank_0
11
12


13
def get_one_epoch_dataloader(dataset, micro_batch_size=None):
Neel Kant's avatar
Neel Kant committed
14
15
16
17
18
    """Specifically one epoch to be used in an indexing job."""
    args = get_args()

    world_size = mpu.get_data_parallel_world_size()
    rank = mpu.get_data_parallel_rank()
19
20
21
    if micro_batch_size is None:
        micro_batch_size = args.micro_batch_size
    global_batch_size = micro_batch_size * world_size
Neel Kant's avatar
Neel Kant committed
22
23
24
25
    num_workers = args.num_workers

    sampler = torch.utils.data.SequentialSampler(dataset)
    # importantly, drop_last must be False to get all the data.
mohammad's avatar
mohammad committed
26
27
    assert False, 'DistributedBatchSampler deprecated, change the implementation'
    from megatron.data.samplers import DistributedBatchSampler
Neel Kant's avatar
Neel Kant committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    batch_sampler = DistributedBatchSampler(sampler,
                                            batch_size=global_batch_size,
                                            drop_last=False,
                                            rank=rank,
                                            world_size=world_size)

    return torch.utils.data.DataLoader(dataset,
                                       batch_sampler=batch_sampler,
                                       num_workers=num_workers,
                                       pin_memory=True)


def get_ict_batch(data_iterator):
    # Items and their type.
    keys = ['query_tokens', 'query_pad_mask',
            'block_tokens', 'block_pad_mask', 'block_data']
    datatype = torch.int64

    # Broadcast data.
    if data_iterator is None:
        data = None
    else:
        data = next(data_iterator)
51
    data_b = tensor_parallel.broadcast_data(keys, data, datatype)
Neel Kant's avatar
Neel Kant committed
52
53
54
55
56
57
58
59
60
61
62
63

    # Unpack.
    query_tokens = data_b['query_tokens'].long()
    query_pad_mask = data_b['query_pad_mask'].long()
    block_tokens = data_b['block_tokens'].long()
    block_pad_mask = data_b['block_pad_mask'].long()
    block_indices = data_b['block_data'].long()

    return query_tokens, query_pad_mask,\
           block_tokens, block_pad_mask, block_indices


64
65
66
67
68
69
70
71
72
73
74
def join_str_list(str_list):
    """Join a list of strings, handling spaces appropriately"""
    result = ""
    for s in str_list:
        if s.startswith("##"):
            result += s[2:]
        else:
            result += " " + s
    return result


75
76
class BlockSampleData(object):
    """A struct for fully describing a fixed-size block of data as used in REALM
77

78
79
80
81
82
83
84
85
86
87
    :param start_idx: for first sentence of the block
    :param end_idx: for last sentence of the block (may be partially truncated in sample construction)
    :param doc_idx: the index of the document from which the block comes in the original indexed dataset
    :param block_idx: a unique integer identifier given to every block.
    """
    def __init__(self, start_idx, end_idx, doc_idx, block_idx):
        self.start_idx = start_idx
        self.end_idx = end_idx
        self.doc_idx = doc_idx
        self.block_idx = block_idx
88

89
90
    def as_array(self):
        return np.array([self.start_idx, self.end_idx, self.doc_idx, self.block_idx]).astype(np.int64)
91

92
93
    def as_tuple(self):
        return self.start_idx, self.end_idx, self.doc_idx, self.block_idx
94
95


96
97
98
99
100
class BlockSamplesMapping(object):
    def __init__(self, mapping_array):
        # make sure that the array is compatible with BlockSampleData
        assert mapping_array.shape[1] == 4
        self.mapping_array = mapping_array
Neel Kant's avatar
Neel Kant committed
101
102
103

    def __len__(self):
        return self.mapping_array.shape[0]
104

105
    def __getitem__(self, idx):
Neel Kant's avatar
Neel Kant committed
106
        """Get the data associated with an indexed sample."""
Neel Kant's avatar
Neel Kant committed
107
        sample_data = BlockSampleData(*self.mapping_array[idx])
108
        return sample_data
109
110
111


def get_block_samples_mapping(block_dataset, title_dataset, data_prefix, num_epochs,
112
                              max_num_samples, max_seq_length, seed, name, use_one_sent_docs=False):
113
    """Get samples mapping for a dataset over fixed size blocks. This function also requires
114
    a dataset of the titles for the source documents since their lengths must be taken into account.
115

116
117
    :return: samples_mapping (BlockSamplesMapping)
    """
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

    if not num_epochs:
        if not max_num_samples:
            raise ValueError("Need to specify either max_num_samples "
                             "or num_epochs")
        num_epochs = np.iinfo(np.int32).max - 1
    if not max_num_samples:
        max_num_samples = np.iinfo(np.int64).max - 1

    # Filename of the index mapping
    indexmap_filename = data_prefix
    indexmap_filename += '_{}_indexmap'.format(name)
    if num_epochs != (np.iinfo(np.int32).max - 1):
        indexmap_filename += '_{}ep'.format(num_epochs)
    if max_num_samples != (np.iinfo(np.int64).max - 1):
        indexmap_filename += '_{}mns'.format(max_num_samples)
    indexmap_filename += '_{}msl'.format(max_seq_length)
    indexmap_filename += '_{}s'.format(seed)
136
137
    if use_one_sent_docs:
        indexmap_filename += '_1sentok'
138
139
140
    indexmap_filename += '.npy'

    # Build the indexed mapping if not exist.
141
    if mpu.get_data_parallel_rank() == 0 and \
142
143
144
145
146
147
148
149
150
151
152
153
154
            not os.path.isfile(indexmap_filename):
        print(' > WARNING: could not find index map file {}, building '
              'the indices on rank 0 ...'.format(indexmap_filename))

        # Make sure the types match the helpers input types.
        assert block_dataset.doc_idx.dtype == np.int64
        assert block_dataset.sizes.dtype == np.int32

        # Build samples mapping
        verbose = torch.distributed.get_rank() == 0
        start_time = time.time()
        print_rank_0(' > building samples index mapping for {} ...'.format(
            name))
155

156
        from megatron.data import helpers
157
        mapping_array = helpers.build_blocks_mapping(
158
159
160
161
162
            block_dataset.doc_idx,
            block_dataset.sizes,
            title_dataset.sizes,
            num_epochs,
            max_num_samples,
163
            max_seq_length - 3,  # account for added tokens
164
            seed,
165
166
            verbose,
            use_one_sent_docs)
Neel Kant's avatar
Neel Kant committed
167

168

169
        print_rank_0(' > done building samples index mapping')
Neel Kant's avatar
Neel Kant committed
170
        np.save(indexmap_filename, mapping_array, allow_pickle=True)
171
172
173
174
175
176
        print_rank_0(' > saved the index mapping in {}'.format(
            indexmap_filename))
        # Make sure all the ranks have built the mapping
        print_rank_0(' > elapsed time to build and save samples mapping '
                     '(seconds): {:4f}'.format(
            time.time() - start_time))
177

178
179
180
181
182
    # This should be a barrier but nccl barrier assumes
    # device_index=rank which is not the case for model
    # parallel case
    counts = torch.cuda.LongTensor([1])
    torch.distributed.all_reduce(counts, group=mpu.get_data_parallel_group())
Neel Kant's avatar
Neel Kant committed
183
184
    assert counts[0].item() == torch.distributed.get_world_size(
        group=mpu.get_data_parallel_group())
185
186
187
188
189

    # Load indexed dataset.
    print_rank_0(' > loading indexed mapping from {}'.format(
        indexmap_filename))
    start_time = time.time()
Neel Kant's avatar
Neel Kant committed
190

Neel Kant's avatar
Neel Kant committed
191
    mapping_array = np.load(indexmap_filename, allow_pickle=True, mmap_mode='r')
Neel Kant's avatar
Neel Kant committed
192
193
    samples_mapping = BlockSamplesMapping(mapping_array)

194
195
196
    print_rank_0('    loaded indexed file in {:3.3f} seconds'.format(
        time.time() - start_time))
    print_rank_0('    total number of samples: {}'.format(
Neel Kant's avatar
Neel Kant committed
197
        mapping_array.shape[0]))
198
199

    return samples_mapping