Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
  • L Lmdeploy
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 1
    • Issues 1
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Metrics
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • CI/CD
    • Repository
    • Value stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • OpenDAS
  • Lmdeploy
  • Issues
  • #4

Closed
Open
Created Jul 22, 2024 by ncic_liuyao@ncic_liuyao

问下DCU版LMDeploy是否支持以下量化特性?

想基本一个baseline版本继续优化,能否告知目前dcu版支持的程度?下一步打算支持的版本?是否支持LMDeploy github上列的这些量化方法

Effective Quantization: LMDeploy supports weight-only and k/v quantization, and the 4-bit inference performance is 2.4x higher than FP16. The quantization quality has been confirmed via OpenCompass evaluation.
Excellent Compatibility: LMDeploy supports KV Cache Quant, AWQ and Automatic Prefix Caching to be used simultaneously.

Assignee
Assign to
Time tracking