Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Lmdeploy
Commits
89f3d322
Unverified
Commit
89f3d322
authored
Aug 18, 2023
by
Li Zhang
Committed by
GitHub
Aug 18, 2023
Browse files
Support TP for w4a16 (#262)
parent
4a60b45d
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
25 additions
and
17 deletions
+25
-17
lmdeploy/serve/turbomind/deploy.py
lmdeploy/serve/turbomind/deploy.py
+25
-17
No files found.
lmdeploy/serve/turbomind/deploy.py
View file @
89f3d322
...
...
@@ -157,18 +157,15 @@ def export(model_name: str,
if
key
==
'w_qkv'
and
ext
==
'bias'
:
attn_bias
=
True
copy
=
False
if
key
in
[
'w1'
,
'w3'
,
'w13'
]:
if
key
in
[
'w1'
,
'w3'
,
'w13'
,
'w_qkv'
]:
split_dim
=
-
1
# TODO: move parameter extraction outside of the loop
if
key
==
'w1'
:
inter_size
=
max
(
inter_size
,
param_data
.
shape
[
-
1
])
elif
key
==
'w13'
:
inter_size
=
max
(
inter_size
,
param_data
.
shape
[
-
1
]
//
2
)
elif
key
==
'w_qkv'
:
split_dim
=
-
2
elif
key
in
[
'w2'
,
'wo'
]:
if
ext
in
[
'scales'
,
'zeros'
,
'bias'
]:
if
ext
in
[
'bias'
]:
copy
=
True
else
:
split_dim
=
0
...
...
@@ -243,7 +240,10 @@ def merge_qkv(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, tp: int,
def
reshape
(
x
):
return
x
.
view
(
x
.
size
(
0
),
tp
,
-
1
)
if
dim
==
2
else
x
.
view
(
tp
,
-
1
)
return
torch
.
cat
((
reshape
(
q
),
reshape
(
k
),
reshape
(
v
)),
dim
=-
1
)
qkv
=
torch
.
cat
((
reshape
(
q
),
reshape
(
k
),
reshape
(
v
)),
dim
=-
1
)
# (input_dim, head_num + 2 * kv_head_num)
return
qkv
.
view
(
q
.
size
(
0
),
-
1
)
def
deploy_llama
(
model_name
:
str
,
model_path
:
str
,
tokenizer_path
:
str
,
...
...
@@ -594,16 +594,16 @@ def deploy_awq(model_name: str, model_path: str, tokenizer_path: str,
sys
.
path
.
append
(
osp
.
join
(
lmdeploy_dir
,
'lib'
))
import
_turbomind
as
_tm
# noqa: E402
def
transpose_qk
(
src
:
torch
.
Tensor
):
def
transpose_qk
_s4
(
src
:
torch
.
Tensor
):
assert
src
.
is_contiguous
()
dst
=
torch
.
zeros_like
(
src
)
_tm
.
transpose_qk_s4_k_m8
(
src
,
dst
,
src
.
size
(
-
1
)
*
8
,
src
.
size
(
0
),
group_size
)
return
dst
def
fuse_w1_w3
(
w1_qw
:
torch
.
Tensor
,
w1_qz
:
torch
.
Tensor
,
w1_s
:
torch
.
Tensor
,
w3_qw
:
torch
.
Tensor
,
w3_qz
:
torch
.
Tensor
,
w3_s
:
torch
.
Tensor
):
def
fuse_w1_w3
_s4
(
w1_qw
:
torch
.
Tensor
,
w1_qz
:
torch
.
Tensor
,
w1_s
:
torch
.
Tensor
,
w3_qw
:
torch
.
Tensor
,
w3_qz
:
torch
.
Tensor
,
w3_s
:
torch
.
Tensor
):
def
fuse
(
a
:
torch
.
Tensor
,
b
:
torch
.
Tensor
):
ab
=
torch
.
cat
((
a
,
b
)).
contiguous
()
...
...
@@ -625,12 +625,16 @@ def deploy_awq(model_name: str, model_path: str, tokenizer_path: str,
assert
qz
.
is_contiguous
()
assert
s
.
is_contiguous
()
_qw
=
torch
.
zeros_like
(
qw
)
_sz
=
torch
.
zeros_like
(
s
,
dtype
=
torch
.
int32
)
_sz
=
torch
.
zeros_like
(
s
,
dtype
=
torch
.
int32
)
# half2
_ws
=
torch
.
zeros_like
(
s
)
_tm
.
convert_s4_k_m8
(
_qw
,
_sz
,
_ws
,
qw
,
s
,
qz
,
qw
.
size
(
-
1
)
*
8
,
qw
.
size
(
0
),
group_size
)
return
_qw
,
_sz
def
tp_m_s4
(
x
:
torch
.
Tensor
,
tp
:
int
):
return
x
.
view
(
x
.
size
(
0
)
//
32
,
tp
,
-
1
,
128
).
permute
(
0
,
2
,
3
,
1
).
contiguous
()
attn_bias
=
False
for
i
in
range
(
num_layer
):
...
...
@@ -661,10 +665,10 @@ def deploy_awq(model_name: str, model_path: str, tokenizer_path: str,
except
:
# noqa: E722
pass
q_qw
=
transpose_qk
(
q_qw
)
k_qw
=
transpose_qk
(
k_qw
)
q_qz
=
transpose_qk
(
q_qz
)
k_qz
=
transpose_qk
(
k_qz
)
q_qw
=
transpose_qk
_s4
(
q_qw
)
k_qw
=
transpose_qk
_s4
(
k_qw
)
q_qz
=
transpose_qk
_s4
(
q_qz
)
k_qz
=
transpose_qk
_s4
(
k_qz
)
q_s
=
permute
(
q_s
)
k_s
=
permute
(
k_s
)
...
...
@@ -674,6 +678,8 @@ def deploy_awq(model_name: str, model_path: str, tokenizer_path: str,
qkv_qw
,
qkv_sz
=
convert_s4
(
qkv_qw
,
qkv_qz
,
qkv_s
,
group_size
)
qkv_qw
=
tp_m_s4
(
qkv_qw
,
tp
)
model_params
[
f
'layers.
{
i
}
.attention.w_qkv.qweight'
]
=
qkv_qw
model_params
[
f
'layers.
{
i
}
.attention.w_qkv.scales_zeros'
]
=
qkv_sz
...
...
@@ -702,12 +708,14 @@ def deploy_awq(model_name: str, model_path: str, tokenizer_path: str,
w2_s
=
get_tensor
(
f
'model.layers.
{
i
}
.mlp.down_proj.scales'
)
w3_s
=
get_tensor
(
f
'model.layers.
{
i
}
.mlp.up_proj.scales'
)
w13_qw
,
w13_qz
,
w13_s
=
fuse_w1_w3
(
w1_qw
,
w1_qz
,
w1_s
,
w3_qw
,
w3_qz
,
w3_s
)
w13_qw
,
w13_qz
,
w13_s
=
fuse_w1_w3
_s4
(
w1_qw
,
w1_qz
,
w1_s
,
w3_qw
,
w3_qz
,
w3_s
)
w13_qw
,
w13_sz
=
convert_s4
(
w13_qw
,
w13_qz
,
w13_s
,
group_size
)
w2_qw
,
w2_sz
=
convert_s4
(
w2_qw
,
w2_qz
,
w2_s
,
group_size
)
w13_qw
=
tp_m_s4
(
w13_qw
,
tp
)
model_params
[
f
'layers.
{
i
}
.feed_forward.w13.qweight'
]
=
w13_qw
model_params
[
f
'layers.
{
i
}
.feed_forward.w13.scales_zeros'
]
=
w13_sz
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment