test_block_manager.py 10.5 KB
Newer Older
zhouxiang's avatar
zhouxiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import pytest
import torch

from lmdeploy.pytorch.messages import SchedulerSession
from lmdeploy.pytorch.paging.block_manager import (DefaultBlockManager,
                                                   WindowBlockManager)
from lmdeploy.pytorch.paging.block_manager.base_block_manager import \
    LogicalAllocator  # noqa: E501


class TestAllocator:

    @pytest.fixture
    def num_gpu_blocks(self):
        yield 16

    @pytest.fixture
    def num_cpu_blocks(self):
        yield 4

    @pytest.fixture
    def allocator(self, num_cpu_blocks, num_gpu_blocks):
        yield LogicalAllocator(num_cpu_blocks, num_gpu_blocks)

    def test_alloc(self, allocator, num_cpu_blocks, num_gpu_blocks):

        # initialize
        num_blocks = num_cpu_blocks + num_gpu_blocks
        gpu_allocator = allocator.get_phy_allocator('gpu')
        cpu_allocator = allocator.get_phy_allocator('cpu')
        assert allocator.get_num_free_blocks() == num_blocks
        assert cpu_allocator.get_num_free_blocks() == num_cpu_blocks
        assert gpu_allocator.get_num_free_blocks() == num_gpu_blocks

        # test allocate
        block_size = 4
        blocks = allocator.allocate(block_size, 'gpu')
        assert len(blocks) == block_size
        assert allocator.get_num_free_blocks() == num_blocks - block_size
        assert gpu_allocator.get_num_free_blocks(
        ) == num_gpu_blocks - block_size

        # test free
        allocator.add_ref_count(blocks, 1)
        allocator.free(blocks)
        assert allocator.get_num_free_blocks() == num_blocks - block_size
        allocator.free(blocks)
        assert allocator.get_num_free_blocks() == num_blocks
        assert gpu_allocator.get_num_free_blocks() == num_gpu_blocks
        assert cpu_allocator.get_num_free_blocks() == num_cpu_blocks

    def test_full(self, allocator, num_cpu_blocks, num_gpu_blocks):

        num_blocks = num_cpu_blocks + num_gpu_blocks
        gpu_allocator = allocator.get_phy_allocator('gpu')
        cpu_allocator = allocator.get_phy_allocator('cpu')

        # no free blocks
        gpu_block_size = num_gpu_blocks
        gpu_blocks = allocator.allocate(gpu_block_size, 'gpu')
        cpu_block_size = num_cpu_blocks
        cpu_blocks = allocator.allocate(cpu_block_size, 'cpu')
        assert cpu_allocator.get_num_free_blocks() == 0
        assert gpu_allocator.get_num_free_blocks() == 0
        with pytest.raises(MemoryError):
            allocator.allocate(1, 'gpu')
        allocator.free(gpu_blocks)
        allocator.free(cpu_blocks)
        assert allocator.get_num_free_blocks() == num_blocks
        assert gpu_allocator.get_num_free_blocks() == num_gpu_blocks
        assert cpu_allocator.get_num_free_blocks() == num_cpu_blocks


class TestDefaultBlockManager:

    @pytest.fixture
    def block_size(self):
        yield 16

    @pytest.fixture
    def num_cpu_blocks(self):
        yield 4

    @pytest.fixture
    def num_gpu_blocks(self):
        yield 4

    @pytest.fixture
    def block_mgr(self, num_cpu_blocks, num_gpu_blocks):
        yield DefaultBlockManager(num_cpu_blocks, num_gpu_blocks)

    def test_alloc(self, block_mgr, block_size, num_gpu_blocks):
        sess = SchedulerSession(0, block_size)

        # test alloc
        token_ids = torch.tensor([1])
        msg = sess.add_sequence(token_ids)
        assert block_mgr.can_allocate(msg)
        block_mgr.allocate(msg)
        block_table = block_mgr.get_block_table(msg)
        assert block_mgr.get_num_free_gpu_blocks() == num_gpu_blocks - 1
        assert block_table is not None
        assert len(block_table) == 1

        # test free
        block_mgr.free(msg)
        block_table = block_mgr.get_block_table(msg)
        assert block_table is None or len(block_table) == 0
        assert block_mgr.get_num_free_gpu_blocks() == num_gpu_blocks

        # alloc over limit
        token_ids = torch.zeros((num_gpu_blocks * block_size + 1, ),
                                dtype=torch.int64)
        msg = sess.add_sequence(token_ids)
        assert not block_mgr.can_allocate(msg)

    def test_append_slot(self, block_mgr, block_size, num_gpu_blocks):
        sess = SchedulerSession(0, block_size)

        # test append
        token_ids = torch.tensor([1])
        msg = sess.add_sequence(token_ids)
        block_mgr.allocate(msg)
        block_table = block_mgr.get_block_table(msg)
        assert len(block_table) == 1

        # no new logical block
        msg.update_token_ids(torch.tensor([1] * (block_size - 1)))
        assert block_mgr.can_append_slot(msg)
        block_mgr.append_slot(msg)
        block_table = block_mgr.get_block_table(msg)
        assert len(block_table) == 1
        assert block_mgr.get_num_free_gpu_blocks() == num_gpu_blocks - 1

        # with new logical block
        msg.update_token_ids(torch.tensor([1]))
        block_mgr.append_slot(msg)
        block_table = block_mgr.get_block_table(msg)
        assert len(block_table) == 2
        assert block_mgr.get_num_free_gpu_blocks() == num_gpu_blocks - 2

    def test_fork(self, block_mgr, block_size, num_gpu_blocks):
        sess = SchedulerSession(0, block_size)

        token_ids = torch.tensor([1] * (block_size * 2 + 1))
        from_msg = sess.add_sequence(token_ids)
        block_mgr.allocate(from_msg)
        from_block_table = block_mgr.get_block_table(from_msg)
        assert len(from_block_table) == 3

        to_msg = sess.fork_sequence(torch.tensor([1]), from_msg)

        # fork
        assert block_mgr.can_fork(from_msg)
        copy_map = block_mgr.fork(from_msg, to_msg)
        block_table = block_mgr.get_block_table(to_msg)
        assert len(block_table) == 3
        assert block_mgr.get_num_free_gpu_blocks() == num_gpu_blocks - 4
        assert block_table[0] == from_block_table[0]
        assert block_table[1] == from_block_table[1]
        assert block_table[2] != from_block_table[2]
        assert len(copy_map) == 1
        assert copy_map[from_block_table[2]] == block_table[2]

        # can not fork
        assert not block_mgr.can_fork(from_msg)

    def test_swap(self, block_mgr, block_size, num_gpu_blocks):
        sess = SchedulerSession(0, block_size)

        token_ids = torch.tensor([1] * (block_size + 1))
        msg = sess.add_sequence(token_ids)
        block_mgr.allocate(msg)

        old_phy_blocks = block_mgr.get_block_table(msg)
        success, swap_map = block_mgr.try_swap_out(msg)
        new_phy_blocks = block_mgr.get_block_table(msg)
        assert success
        assert block_mgr.get_num_free_gpu_blocks() == num_gpu_blocks
        assert block_mgr.get_num_free_cpu_blocks() == num_gpu_blocks - 2
        assert len(swap_map) == 2
        for block_id in old_phy_blocks:
            assert block_id in swap_map
        for block_id in new_phy_blocks:
            assert block_id - num_gpu_blocks in swap_map.values()

        old_phy_blocks = block_mgr.get_block_table(msg)
        success, swap_map = block_mgr.try_swap_in(msg)
        new_phy_blocks = block_mgr.get_block_table(msg)
        assert block_mgr.get_num_free_gpu_blocks() == num_gpu_blocks - 2
        assert block_mgr.get_num_free_cpu_blocks() == num_gpu_blocks
        assert len(swap_map) == 2
        for block_id in old_phy_blocks:
            assert block_id - num_gpu_blocks in swap_map
        for block_id in new_phy_blocks:
            assert block_id in swap_map.values()

        success, swap_map = block_mgr.try_swap_out(msg)
        assert success
        token_ids = torch.tensor([1] * (block_size * 4))
        msg_full = sess.add_sequence(token_ids)
        block_mgr.allocate(msg_full)
        success, swap_map = block_mgr.try_swap_out(msg)
        assert not success


class TestWindowBlockManager:

    @pytest.fixture
    def window_size(self):
        yield 32

    @pytest.fixture
    def block_size(self):
        yield 16

    @pytest.fixture
    def num_cpu_blocks(self):
        yield 4

    @pytest.fixture
    def num_gpu_blocks(self):
        yield 4

    @pytest.fixture
    def block_mgr(self, num_cpu_blocks, num_gpu_blocks, window_size):
        yield WindowBlockManager(num_cpu_blocks, num_gpu_blocks, window_size)

    def test_alloc(self, block_mgr, block_size, num_gpu_blocks):
        sess = SchedulerSession(0, block_size)

        # test alloc
        token_ids = torch.tensor([1])
        msg = sess.add_sequence(token_ids)
        assert block_mgr.can_allocate(msg)
        block_mgr.allocate(msg)
        block_table = block_mgr.get_block_table(msg)
        assert block_mgr.get_num_free_gpu_blocks() == num_gpu_blocks - 1
        assert block_table is not None
        assert len(block_table) == 1

        # test free
        block_mgr.free(msg)
        block_table = block_mgr.get_block_table(msg)
        assert block_table is None or len(block_table) == 0
        assert block_mgr.get_num_free_gpu_blocks() == num_gpu_blocks

        # alloc over limit
        token_ids = torch.zeros((num_gpu_blocks * block_size + 1, ),
                                dtype=torch.int64)
        msg = sess.add_sequence(token_ids)
        assert not block_mgr.can_allocate(msg)

    def test_win_alloc(self, block_mgr, block_size, num_gpu_blocks,
                       window_size):
        sess = SchedulerSession(0, block_size)

        # 2 win block
        token_ids = torch.tensor([1] * window_size)
        msg = sess.add_sequence(token_ids)
        block_mgr.allocate(msg)
        msg.update_token_ids(torch.tensor([1]))
        block_mgr.allocate(msg)
        assert block_mgr.get_num_free_gpu_blocks() == num_gpu_blocks - 3
        block_table = block_mgr.get_block_table(msg)
        assert block_table is None or len(block_table) == 3
        block_mgr.free(msg)

        # 3 win block
        token_ids = torch.tensor([1] * (window_size + 2))
        msg = sess.add_sequence(token_ids)
        block_mgr.allocate(msg)
        assert block_mgr.get_num_free_gpu_blocks() == num_gpu_blocks - 3
        msg.update_token_ids(torch.tensor([1]))
        block_mgr.allocate(msg)
        assert block_mgr.get_num_free_gpu_blocks() == num_gpu_blocks - 3
        block_table = block_mgr.get_block_table(msg)
        assert block_table is None or len(block_table) == 3
        block_mgr.free(msg)

        # not full win
        token_ids = torch.tensor([1] * (window_size - 2))
        msg = sess.add_sequence(token_ids)
        block_mgr.allocate(msg)
        assert block_mgr.get_num_free_gpu_blocks() == num_gpu_blocks - 2
        msg.update_token_ids(torch.tensor([1]))
        block_mgr.allocate(msg)
        assert block_mgr.get_num_free_gpu_blocks() == num_gpu_blocks - 2
        block_table = block_mgr.get_block_table(msg)
        assert block_table is None or len(block_table) == 2
        block_mgr.free(msg)