LlamaContextAttentionLayer.cc 19.2 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2021-2023, NVIDIA CORPORATION.  All rights reserved.
 * Copyright (c) 2021, NAVER Corp.  Authored by CLOVA.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
Li Zhang's avatar
Li Zhang committed
18
19
20

// Modified from
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/layers/attention_layers/GptContextAttentionLayer.cc
Li Zhang's avatar
Li Zhang committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

#include "src/fastertransformer/models/llama/LlamaContextAttentionLayer.h"
#include "src/fastertransformer/kernels/bert_preprocess_kernels.h"
#include "src/fastertransformer/kernels/unfused_attention_kernels.h"
#include "src/fastertransformer/models/llama/LlamaNcclGuard.h"
#include "src/fastertransformer/models/llama/llama_kernels.h"
#include "src/fastertransformer/models/llama/llama_utils.h"
#include "src/fastertransformer/utils/Tensor.h"
#include "src/fastertransformer/utils/cuda_utils.h"

namespace fastertransformer {

template<typename T>
void LlamaContextAttentionLayer<T>::allocateBuffer(size_t batch_size,
                                                   size_t num_token,
                                                   size_t max_q_len,
                                                   size_t max_k_len)
{
    FT_LOG_DEBUG(__PRETTY_FUNCTION__);

    // no padding
    qkv_buf_ = (T*)allocator_->reMalloc(qkv_buf_, sizeof(T) * num_token * 3 * local_hidden_units_, true);

    // padding is rebuilt for q/k/v_buf_2_
    q_buf_2_ = (T*)allocator_->reMalloc(q_buf_2_, sizeof(T) * 3 * batch_size * max_q_len * local_hidden_units_, true);
    k_buf_2_ = q_buf_2_ + batch_size * max_q_len * local_hidden_units_;
    v_buf_2_ = k_buf_2_ + batch_size * max_q_len * local_hidden_units_;

    if (use_fmha_) {
        FlashAttentionOp<T> flash_attention(batch_size, local_head_num_, max_k_len, max_q_len, size_per_head_);
        if (flash_attention.get_workspace_size() > 0) {
            qk_buf_float_ = (float*)allocator_->reMalloc(qk_buf_float_, flash_attention.get_workspace_size(), true);
        }
    }
    else {
        k_cache_buf_ = (T*)allocator_->reMalloc(
            k_cache_buf_, 2 * sizeof(T) * batch_size * local_head_num_ * max_k_len * size_per_head_, true);
        v_cache_buf_ = k_cache_buf_ + batch_size * local_head_num_ * max_k_len * size_per_head_;

        qk_buf_ =
            (T*)allocator_->reMalloc(qk_buf_, sizeof(T) * batch_size * local_head_num_ * max_q_len * max_k_len, true);

        // qkv_buf_2_ has padding
        qkv_buf_2_ =
            (T*)allocator_->reMalloc(qkv_buf_2_, sizeof(T) * batch_size * max_q_len * local_hidden_units_, true);
    }

    // qkv_buf_3_ padding is removed
    qkv_buf_3_ = (T*)allocator_->reMalloc(qkv_buf_3_, sizeof(T) * num_token * local_hidden_units_, true);

    is_allocate_buffer_ = true;
}

template<typename T>
void LlamaContextAttentionLayer<T>::freeBuffer()
{
    if (is_allocate_buffer_) {
        FT_LOG_DEBUG(__PRETTY_FUNCTION__);

        allocator_->free((void**)(&qkv_buf_));
        allocator_->free((void**)(&q_buf_2_));
        if (use_fmha_) {
            allocator_->free((void**)&qk_buf_float_);
        }
        else {
            allocator_->free((void**)(&k_cache_buf_));
            allocator_->free((void**)(&qk_buf_));
            allocator_->free((void**)(&qkv_buf_2_));
        }
        allocator_->free((void**)(&qkv_buf_3_));

        is_allocate_buffer_ = false;
    }
}

template<typename T>
inline void LlamaContextAttentionLayer<T>::forward(TensorMap*                     output_tensors,
                                                   const TensorMap*               input_tensors,
                                                   const LlamaAttentionWeight<T>* weights)
{
    FT_LOG_DEBUG(__PRETTY_FUNCTION__);

    /**
     * input_tensors:
     *   \param input_query [token_num, hidden_dim]
     *   \param attention_mask [batch_size, 1, max_q_len, max_kv_len]
     *   \param padding_offset [token_num], int
     *   \param input_lengths [batch_size], int
     *   \param history_lengths [batch_size], int
     *   \param context_lengths [batch_size], int
     *   \param cu_seqlens [batch_size+1], int
     *   \param max_seq_len [1], int on cpu
     *   \param is_final_layer [1], bool on cpu
     *   \param layer_id [1], int on cpu
     *
     * output_tensors:
     *   \param hidden_features [token_num, hidden_dim]
     *   \param key_cache [batch_size], uint64
     *   \param value_cache [batch_size], uint64
     */

    /////////////////////////////////////////////
    /// parse inputs
    const int batch_size = input_tensors->at("attention_mask").shape[0];
    const int max_q_len  = input_tensors->at("attention_mask").shape[2];
    const int max_k_len  = input_tensors->at("attention_mask").shape[3];
    const int layer_id   = input_tensors->getVal<int>("layer_id");

    const int num_token = input_tensors->at("input_query").shape[0];

    const int max_seq_len = input_tensors->at("max_seq_len").getVal<int>();

    T* attention_out   = output_tensors->at("hidden_features").getPtr<T>();
    T* attention_input = input_tensors->at("input_query").getPtr<T>();
    T* attention_mask  = input_tensors->at("attention_mask").getPtr<T>();

    const auto input_length   = input_tensors->at("input_lengths").getPtr<const int>();
    const auto history_length = input_tensors->at("history_lengths").getPtr<const int>();
    const auto context_length = input_tensors->at("context_lengths").getPtr<const int>();
    int*       cu_seqlens     = input_tensors->at("cu_seqlens").getPtr<int>();

    const auto padding_offset = input_tensors->at("padding_offset").getPtr<int>();

    /////////////////////////////////////////////
    /// allocate buffers
    allocateBuffer(batch_size, num_token, max_q_len, max_k_len);

    //////////////////////////////////////////////
    /// qkv gemm
    // [token_num, hidden_dim] -> [token_num, 3, local_hidden_dim]
    linear_.forward(qkv_buf_, attention_input, num_token, weights->qkv);

    //////////////////////////////////////////////
    /// transpose qkv & apply rotary embedding & rebuild padding
    /// qkv [B, s, 3, H, D] -> (q [B, H, s, D], k [B, H, s, D], v [B, H, s, D])
    invokeAddFusedQKVBiasTranspose(q_buf_2_,
                                   k_buf_2_,
                                   v_buf_2_,
                                   PrefixPromptBatchWeightsParam<T>{},
                                   qkv_buf_,
Li Zhang's avatar
Li Zhang committed
161
162
163
                                   weights->qkv.bias,
                                   padding_offset,  // padding_offset,
                                   history_length,  // used for applying rotary embedding
Li Zhang's avatar
Li Zhang committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
                                   batch_size,
                                   max_q_len,  // seq_len
                                   num_token,  // batch_size * seq_len
                                   local_head_num_,
                                   size_per_head_,
                                   rotary_embedding_dim_,
                                   neox_rotary_style_,
                                   nullptr,  // query_weight.scale_out
                                   0,        // int8 mode
                                   stream_);
    sync_check_cuda_error();

    const size_t layer_offset = layer_id * local_head_num_ * max_seq_len * size_per_head_;

    auto k_cache_ptrs = output_tensors->getPtr<T*>("key_cache");
    auto v_cache_ptrs = output_tensors->getPtr<T*>("value_cache");
    //////////////////////////////////////////////////////////
    /// insert the k/v computed from inputs into k/v cache
    /// transpose kv -> kv cache
    // put k/v_buf from shape [B, H, s, D] to
    // k_buf_2 [B, H, s, D] -> key_cache [B, H, S[t:t+s], D/x, x]
    // v_buf_2 [B, H, s, D] -> val_cache [B, H, S[t:t+s], D/x, x]
    invokeExtendKVCache(k_cache_ptrs,
                        v_cache_ptrs,
                        layer_offset,
                        k_buf_2_,
                        v_buf_2_,
                        batch_size,
                        input_length,
                        max_q_len,
                        history_length,
                        max_seq_len,
                        size_per_head_,
                        local_head_num_,
198
199
200
201
202
                        stream_,
                        quant_policy_,
                        weights->past_kv_scale.data());

    sync_check_cuda_error();
Li Zhang's avatar
Li Zhang committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    if (use_fmha_) {
        fusedMultiHeadAttention(k_cache_ptrs,
                                v_cache_ptrs,
                                layer_offset,
                                attention_mask,
                                cu_seqlens,
                                batch_size,
                                max_q_len,
                                max_k_len,
                                max_seq_len);
    }
    else {
        unfusedMultiHeadAttention(k_cache_ptrs,
                                  v_cache_ptrs,
                                  layer_offset,
                                  attention_mask,
                                  padding_offset,
                                  context_length,
                                  batch_size,
                                  num_token,
                                  max_q_len,
                                  max_k_len,
225
226
227
                                  max_seq_len,
                                  quant_policy_,
                                  weights->past_kv_scale.data());
Li Zhang's avatar
Li Zhang committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
    }

    //////////////////////////////////////////////
    /// output gemm <Bs,HD> -> <Bs,HD>
    linear_.forward(attention_out, qkv_buf_3_, num_token, weights->output);

    if (tensor_para_.world_size_ > 1) {
        NcclGuard nccl_guard(tensor_para_, stream_);
        ftNcclAllReduceSum(attention_out, attention_out, num_token * hidden_units_, tensor_para_, stream_);
        sync_check_cuda_error();
    }

    if (is_free_buffer_after_forward_ == true) {
        freeBuffer();
    }
    sync_check_cuda_error();
}

template<typename T>
void LlamaContextAttentionLayer<T>::fusedMultiHeadAttention(T**    key_cache_ptrs,
                                                            T**    val_cache_ptrs,
                                                            size_t cache_layer_offset,
                                                            T*     attention_mask,
                                                            int*   cu_seqlens,
                                                            int    batch_size,
                                                            int    max_q_len,
                                                            int    max_k_len,
                                                            int    max_seq_len)
{
    //////////////////////////////////////////////
    // flash attention
    using AttentionOp = FlashAttentionOp<T>;
    using Layout      = typename AttentionOp::AttentionLayout;
    Layout layout_q{.stride_batch = int(local_head_num_ * max_q_len * size_per_head_),
                    .stride_seq   = int(size_per_head_),
                    .stride_head  = int(max_q_len * size_per_head_)};
    Layout layout_k{.stride_batch      = int(local_head_num_ * max_seq_len * size_per_head_),
                    .stride_seq        = int(size_per_head_),
                    .stride_head       = int(max_seq_len * size_per_head_),
                    .batch_seqs_offset = int(cache_layer_offset),
                    .batch_seqs        = key_cache_ptrs};
    Layout layout_v{.stride_batch      = int(local_head_num_ * max_seq_len * size_per_head_),
                    .stride_seq        = int(size_per_head_),
                    .stride_head       = int(max_seq_len * size_per_head_),
                    .batch_seqs_offset = int(cache_layer_offset),
                    .batch_seqs        = val_cache_ptrs};
    Layout layout_o{
        .stride_batch = int(local_head_num_ * max_q_len * size_per_head_),
        .stride_seq   = int(local_head_num_ * size_per_head_),
        .stride_head  = int(size_per_head_),
        .use_seqlens  = true,
    };
    AttentionOp flash_attention(batch_size, local_head_num_, max_k_len, max_q_len, size_per_head_);

    typename AttentionOp::Params attn_params{.attn_out     = qkv_buf_3_,
                                             .query        = q_buf_2_,
                                             .key          = k_cache_buf_,
                                             .val          = v_cache_buf_,
                                             .mask         = attention_mask,
                                             .out_accum    = qk_buf_float_,
                                             .cu_seqlens_q = cu_seqlens,
                                             .cu_seqlens_k = nullptr,
                                             .layout_q     = layout_q,
                                             .layout_k     = layout_k,
                                             .layout_v     = layout_v,
                                             .layout_o     = layout_o};

    //
    flash_attention(attn_params, stream_);
}

template<typename T>
AllentDan's avatar
AllentDan committed
300
301
302
303
304
305
306
307
308
309
310
311
312
void LlamaContextAttentionLayer<T>::unfusedMultiHeadAttention(T**          key_cache_ptrs,
                                                              T**          val_cache_ptrs,
                                                              size_t       cache_layer_offset,
                                                              const T*     attention_mask,
                                                              const int*   padding_offset,
                                                              const int*   context_length,
                                                              int          batch_size,
                                                              int          num_token,
                                                              int          max_q_len,
                                                              int          max_k_len,
                                                              int          max_seq_len,
                                                              int          quant,
                                                              const float* kv_scale)
Li Zhang's avatar
Li Zhang committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
{
    // key_cache [B, H, S[:t+s], D/x, x] -> [B, H, t+s, D]
    // val_cache [B, H, S[:t+s], D/x, x] -> [B, H, t+s, D]
    invokeTransposeKVCache(k_cache_buf_,
                           v_cache_buf_,
                           (const T**)key_cache_ptrs,
                           (const T**)val_cache_ptrs,
                           cache_layer_offset,
                           batch_size,
                           context_length,  // history_len + input_len = context_len
                           max_k_len,
                           max_seq_len,
                           size_per_head_,
                           local_head_num_,
327
328
329
                           stream_,
                           quant,
                           kv_scale);
Li Zhang's avatar
Li Zhang committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
    sync_check_cuda_error();

    const T qk_scale = static_cast<T>(1.f / sqrtf(size_per_head_ * 1.f));

    //////////////////////////////////////////////
    /// Q*K batch gemm
    /// -> [B, H, s, t + s]
    cublas_wrapper_->stridedBatchedGemm(CUBLAS_OP_T,
                                        CUBLAS_OP_N,
                                        max_k_len,                      // m
                                        max_q_len,                      // n
                                        size_per_head_,                 // k
                                        k_cache_buf_,                   // A
                                        size_per_head_,                 // lda
                                        max_k_len * size_per_head_,     // strideA
                                        q_buf_2_,                       // B
                                        size_per_head_,                 // ldb
                                        max_q_len * size_per_head_,     // strideB
                                        qk_buf_,                        // C
                                        max_k_len,                      // ldc
                                        max_q_len * max_k_len,          // strideC
                                        batch_size * local_head_num_);  // batchCount

    //////////////////////////////////////////////
    /// ! masked softmax (kernel asserts k_length <= 4096)
    MaskedSoftmaxParam<T, T> param{};
    param.attention_score    = qk_buf_;
    param.qk                 = qk_buf_;
    param.attention_mask     = attention_mask;
    param.batch_size         = batch_size;
    param.q_length           = max_q_len;
    param.k_length           = max_k_len;
    param.num_heads          = local_head_num_;
    param.qk_scale           = qk_scale;
    param.linear_bias_slopes = nullptr;
    invokeMaskedSoftmax(param, stream_);
    sync_check_cuda_error();

    //////////////////////////////////////////////
    /// softmax(QK)*V batch gemm
    // -> [B, H, S, D]
    cublas_wrapper_->stridedBatchedGemm(CUBLAS_OP_N,
                                        CUBLAS_OP_N,
                                        size_per_head_,                 // m
                                        max_q_len,                      // n
                                        max_k_len,                      // k
                                        v_cache_buf_,                   // A
                                        size_per_head_,                 // lda
                                        max_k_len * size_per_head_,     // strideA,
                                        qk_buf_,                        // B
                                        max_k_len,                      // ldb
                                        max_k_len * max_q_len,          // strideB
                                        qkv_buf_2_,                     // C
                                        size_per_head_,                 // ldc,
                                        max_q_len * size_per_head_,     // strideC
                                        batch_size * local_head_num_);  // batchCount

    //////////////////////////////////////////////
    /// transpose <B,h,s,D> -> <B,s,h,D>
    invokeTransposeAttentionOutRemovePadding(qkv_buf_2_,
                                             qkv_buf_3_,
                                             num_token,
                                             batch_size,
                                             max_q_len,
                                             local_head_num_,
                                             size_per_head_,
                                             padding_offset,
                                             nullptr,
                                             0,
                                             stream_);
    sync_check_cuda_error();
}

template class LlamaContextAttentionLayer<float>;
template class LlamaContextAttentionLayer<half>;

AllentDan's avatar
AllentDan committed
406
}  // namespace fastertransformer