"vscode:/vscode.git/clone" did not exist on "d1481392271fd44b04c384a3dd56f3386edadfb3"
LlamaBatch.cc 44 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// Copyright (c) OpenMMLab. All rights reserved.

#include "src/fastertransformer/models/llama/LlamaBatch.h"
#include "src/fastertransformer/kernels/decoding_kernels.h"
#include "src/fastertransformer/models/llama/LlamaNcclGuard.h"
#include "src/fastertransformer/models/llama/LlamaV2.h"
#include "src/fastertransformer/models/llama/Request.h"
#include "src/fastertransformer/models/llama/llama_utils.h"
#include "src/fastertransformer/utils/Tensor.h"
#include "src/fastertransformer/utils/logger.h"
#include <cstdint>
#include <iomanip>
#include <sstream>
#include <unordered_map>

namespace fastertransformer {

template<typename T>
void LlamaBatch<T>::verifyRequests(std::vector<std::shared_ptr<Request>>& stop_reqs,
                                   std::vector<std::shared_ptr<Request>>& infer_reqs)
{
AllentDan's avatar
AllentDan committed
22
    std::unordered_map<uint64_t, int> occurrence;
Li Zhang's avatar
Li Zhang committed
23

AllentDan's avatar
AllentDan committed
24
    auto count_occurrence = [&occurrence](const std::vector<std::shared_ptr<Request>>& rs) {
Li Zhang's avatar
Li Zhang committed
25
        for (const auto& r : rs) {
AllentDan's avatar
AllentDan committed
26
            ++occurrence[r->id];
Li Zhang's avatar
Li Zhang committed
27
28
29
30
31
32
33
34
35
        }
    };

    auto invalidate = [](const char* type, std::shared_ptr<Request>& req, int ec) {
        FT_LOG_WARNING("[verifyRequests] Skipping invalid %s request for id %ld, code = %d", type, (long)req->id, ec);
        req->signal.set_value(ec);
        req.reset();
    };

AllentDan's avatar
AllentDan committed
36
37
    auto handle_conflict_or_invalid = [this, &occurrence, &invalidate](std::vector<std::shared_ptr<Request>>& rs,
                                                                       const char*                            type) {
Li Zhang's avatar
Li Zhang committed
38
39
40
41
        for (auto& r : rs) {
            if (r) {
                int ec = 0;

AllentDan's avatar
AllentDan committed
42
                if (occurrence[r->id] != 1) {
Li Zhang's avatar
Li Zhang committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
                    ec = Request::kConflict;
                }
                else if (r->start_flag && r->stop_flag) {
                    ec = Request::kInvalid;
                }
                else if (!r->start_flag && !llama_->kv_cache_mgr_->contains(r->id)) {
                    ec = Request::kInvalid;
                }

                if (ec) {
                    invalidate(type, r, ec);
                }
            }
        }
    };

    auto drop_invalid = [](std::vector<std::shared_ptr<Request>>& rs) {
        int count = 0;
        for (int i = 0; i < rs.size(); ++i) {
            if (rs[i]) {
                rs[count++] = std::move(rs[i]);
            }
        }
        rs.resize(count);
    };

AllentDan's avatar
AllentDan committed
69
70
    count_occurrence(stop_reqs);
    count_occurrence(infer_reqs);
Li Zhang's avatar
Li Zhang committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

    if (!stop_reqs.empty()) {
        handle_conflict_or_invalid(stop_reqs, "stop");

        // invalidate stop-only requests for inactive sequences
        for (auto& r : stop_reqs) {
            if (r && r->end_flag == false) {
                int ec = Request::kInactive;
                for (int i = 0; i < batch_size_; ++i) {
                    if (requests_[i] && requests_[i]->id == r->id) {
                        ec = 0;
                        break;
                    }
                }
                if (ec) {
                    invalidate("stop", r, ec);
                }
            }
        }

        drop_invalid(stop_reqs);
    }

    if (!infer_reqs.empty()) {
        handle_conflict_or_invalid(infer_reqs, "infer");

        // invalidate requests for busy sequences
        for (auto& r : infer_reqs) {
            if (r) {
                for (int i = 0; i < batch_size_; ++i) {
                    if (requests_[i] && requests_[i]->id == r->id) {
                        invalidate("infer", r, Request::kBusy);
                        break;
                    }
                }
            }
        }

        drop_invalid(infer_reqs);
    }
}

template<typename T>
void LlamaBatch<T>::handleStopRequests(const std::vector<std::shared_ptr<Request>>& requests)
{
    for (const auto& r : requests) {
        int ec = Request::kFail;
        // find matching active sequence
        for (int i = 0; i < batch_size_; ++i) {
            // stop & optionally erase active sequence
            if (requests_[i] && requests_[i]->id == r->id) {
                ec = 0;
                finishRequest(i, r->end_flag);
                break;
            }
        }
        // mismatch, try erase inactive sequence
        if (ec && r->end_flag) {
            ec = 0;
            llama_->kv_cache_mgr_->erase(r->id);
        }
AllentDan's avatar
AllentDan committed
132
        // clear output buffers (prevent leaking conversations) if request is successful
Li Zhang's avatar
Li Zhang committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
        if (ec == 0) {
            auto& output_ids      = r->outputs[rank_].at("output_ids");
            auto& sequence_length = r->outputs[rank_].at("sequence_length");
            check_cuda_error(
                cudaMemsetAsync(output_ids.getPtr<int>(), 0, sizeof(int) * output_ids.shape.at(2), stream_));
            check_cuda_error(cudaMemsetAsync(sequence_length.getPtr<int>(), 0, sizeof(int), stream_));
            check_cuda_error(cudaStreamSynchronize(stream_));
        }
        if (rank_ == 0) {
            r->signal.set_value(ec);
        }
    }
}

template<typename T>
void LlamaBatch<T>::allocateBuffer(size_t batch_size, size_t session_len)
{
    FT_LOG_DEBUG(__PRETTY_FUNCTION__);
    const size_t batchxbeam = batch_size;

    const size_t hidden_units = llama_->hidden_units_;
    const size_t vocab_size   = llama_->vocab_size_;

    context_decoder_input_buf_ =
        (T*)allocator_->reMalloc(context_decoder_input_buf_, sizeof(T) * max_context_token_num_ * hidden_units, false);
    context_decoder_ids_buf_ =
        (int*)allocator_->reMalloc(context_decoder_ids_buf_, sizeof(int) * max_context_token_num_, false);

    decoder_input_buf_  = (T*)allocator_->reMalloc(decoder_input_buf_, sizeof(T) * batchxbeam * hidden_units, false);
    decoder_output_buf_ = (T*)allocator_->reMalloc(decoder_output_buf_, sizeof(T) * batchxbeam * hidden_units, false);

    input_ids_buf_      = (int*)allocator_->reMalloc(input_ids_buf_, sizeof(int) * batchxbeam * session_len, true);
    input_length_buf_   = (int*)allocator_->reMalloc(input_length_buf_, sizeof(int) * batchxbeam);
    history_length_buf_ = (int*)allocator_->reMalloc(history_length_buf_, sizeof(int) * batchxbeam);
    context_length_buf_ = (int*)allocator_->reMalloc(context_length_buf_, sizeof(int) * batchxbeam);

    total_padding_count_ = (int*)allocator_->reMalloc(total_padding_count_, sizeof(int) * batchxbeam, false);
    sequence_lengths_    = (int*)allocator_->reMalloc(sequence_lengths_, sizeof(int) * batchxbeam, false);

    k_cache_ptr_buf_ = (uint64_t*)allocator_->reMalloc(k_cache_ptr_buf_, sizeof(uint64_t) * batchxbeam);
    v_cache_ptr_buf_ = (uint64_t*)allocator_->reMalloc(v_cache_ptr_buf_, sizeof(uint64_t) * batchxbeam);

    logits_buf_       = (float*)allocator_->reMalloc(logits_buf_, sizeof(float) * batchxbeam * vocab_size, false);
    local_logits_buf_ = (float*)allocator_->reMalloc(local_logits_buf_, sizeof(float) * batchxbeam * vocab_size, false);

    token_ids_buf_ = (int*)allocator_->reMalloc(token_ids_buf_, sizeof(int) * batchxbeam * session_len * 2, true);

    end_ids_buf_   = (int*)allocator_->reMalloc(end_ids_buf_, sizeof(int) * batch_size, false);
    finished_buf_  = (bool*)allocator_->reMalloc(finished_buf_, sizeof(bool) * batchxbeam, false);
    seq_limit_len_ = (uint32_t*)allocator_->reMalloc(seq_limit_len_, sizeof(uint32_t) * batch_size, false);

    is_allocate_buffer_ = true;
}

template<typename T>
void LlamaBatch<T>::allocatePersistantBuffer(size_t max_batch_size)
{
    output_ids_buf_ = (int*)allocator_->reMalloc(output_ids_buf_, sizeof(int) * max_batch_size * session_len_, true);

    stop_words_buf_ =
        (int*)allocator_->reMalloc(stop_words_buf_, sizeof(int) * max_batch_size * kMaxStopBadWordsLen, true);
    bad_words_buf_ =
        (int*)allocator_->reMalloc(bad_words_buf_, sizeof(int) * max_batch_size * kMaxStopBadWordsLen, true);

    h_runtime_top_k_ = (int*)allocator_->reMalloc(h_runtime_top_k_, sizeof(int) * max_batch_size, true, true);
    h_runtime_top_p_ = (float*)allocator_->reMalloc(h_runtime_top_p_, sizeof(float) * max_batch_size, true, true);
    h_temperature_   = (float*)allocator_->reMalloc(h_temperature_, sizeof(float) * max_batch_size, true, true);
    h_repetition_penalty_ =
        (float*)allocator_->reMalloc(h_repetition_penalty_, sizeof(float) * max_batch_size, true, true);
    h_random_seed_ = (uint64_t*)allocator_->reMalloc(h_random_seed_, sizeof(uint64_t) * max_batch_size, true, true);

    sampling_params_ = {{"stop_words_list", stop_words_buf_},
                        {"bad_words_list", bad_words_buf_},
                        {"runtime_top_k", h_runtime_top_k_},
                        {"runtime_top_p", h_runtime_top_p_},
                        {"temperature", h_temperature_},
                        {"repetition_penalty", h_repetition_penalty_},
                        {"random_seed", h_random_seed_}};

    topk_curandstate_buf_ = allocator_->reMalloc(topk_curandstate_buf_, sizeof(curandState_t) * max_batch_size, true);
    topp_curandstate_buf_ = allocator_->reMalloc(topp_curandstate_buf_, sizeof(curandState_t) * max_batch_size, true);

    {
        NcclGuard barrier(llama_->tensor_para_, stream_, true);
        h_input_ids_buf_ =
            (int*)allocator_->reMalloc(h_input_ids_buf_, sizeof(int) * max_batch_size * session_len_, false, true);
        h_input_length_buf_ =
            (int*)allocator_->reMalloc(h_input_length_buf_, sizeof(int) * max_batch_size, false, true);
        h_history_length_buf_ =
            (int*)allocator_->reMalloc(h_history_length_buf_, sizeof(int) * max_batch_size, false, true);
        h_context_length_buf_ =
            (int*)allocator_->reMalloc(h_context_length_buf_, sizeof(int) * max_batch_size, false, true);
        h_sequence_lengths_ =
            (int*)allocator_->reMalloc(h_sequence_lengths_, sizeof(int) * max_batch_size, false, true);
        h_k_cache_ptr_buf_ =
            (uintptr_t*)allocator_->reMalloc(h_k_cache_ptr_buf_, sizeof(uintptr_t) * max_batch_size, true, true);
        h_v_cache_ptr_buf_ =
            (uintptr_t*)allocator_->reMalloc(h_v_cache_ptr_buf_, sizeof(uintptr_t) * max_batch_size, true, true);
        h_finished_buf_ = (bool*)allocator_->reMalloc(h_finished_buf_, sizeof(bool) * max_batch_size, false, true);
        h_seq_limit_len_ =
            (uint32_t*)allocator_->reMalloc(h_seq_limit_len_, sizeof(uint32_t) * max_batch_size, false, true);
    }

    is_allocate_persistant_buffer_ = true;
}

template<typename T>
void LlamaBatch<T>::freeBuffer()
{
    FT_LOG_DEBUG(__PRETTY_FUNCTION__);
    if (is_allocate_buffer_) {
        allocator_->free((void**)&context_decoder_input_buf_);
        allocator_->free((void**)&context_decoder_ids_buf_);

        allocator_->free((void**)&decoder_input_buf_);
        allocator_->free((void**)&decoder_output_buf_);

        allocator_->free((void**)&input_ids_buf_);
        allocator_->free((void**)&input_length_buf_);
        allocator_->free((void**)&history_length_buf_);
        allocator_->free((void**)&context_length_buf_);

        allocator_->free((void**)&total_padding_count_);
        allocator_->free((void**)&sequence_lengths_);

        allocator_->free((void**)&k_cache_ptr_buf_);
        allocator_->free((void**)&v_cache_ptr_buf_);

        allocator_->free((void**)&logits_buf_);
        allocator_->free((void**)&local_logits_buf_);

        allocator_->free((void**)&token_ids_buf_);

        allocator_->free((void**)&end_ids_buf_);
        allocator_->free((void**)&finished_buf_);
        allocator_->free((void**)&seq_limit_len_);

        is_allocate_buffer_ = false;
    }

    if (is_allocate_persistant_buffer_) {
        allocator_->free((void**)&h_input_ids_buf_, true);
        allocator_->free((void**)&h_input_length_buf_, true);
        allocator_->free((void**)&h_history_length_buf_, true);
        allocator_->free((void**)&h_context_length_buf_, true);
        allocator_->free((void**)&h_sequence_lengths_, true);
        allocator_->free((void**)&h_k_cache_ptr_buf_, true);
        allocator_->free((void**)&h_v_cache_ptr_buf_, true);
        allocator_->free((void**)&h_seq_limit_len_, true);
        allocator_->free((void**)&h_finished_buf_, true);

        allocator_->free((void**)&output_ids_buf_);

        is_allocate_persistant_buffer_ = false;
    }
}

template<typename T>
LlamaBatch<T>::LlamaBatch(int max_batch_size, int max_context_token_num, int session_len, LlamaV2<T>* llama):
    max_batch_size_(max_batch_size),
    max_context_token_num_(max_context_token_num),
    session_len_(session_len),
    rank_(llama->tensor_para_.rank_),
    debug_(llama->debug_),
    llama_(llama),
    data_type_(getTensorType<T>())
{
    stream_         = llama_->stream_;
    allocator_      = llama_->allocator_;
    cublas_wrapper_ = llama_->cublas_wrapper_;

    requests_.resize(max_batch_size);
    request_seq_len_limit_.resize(max_batch_size);
    cached_seq_.resize(max_batch_size);

    allocatePersistantBuffer(max_batch_size);
}

template<typename T>
void LlamaBatch<T>::initializeSampling(int infer_request_count)
{
    TensorMap inputs;
    for (const auto& param : sampling_params_) {
        const Tensor* ptr{};
        for (int i = 0; i < batch_size_; ++i) {
            if (requests_[i]->inputs[rank_].isExist(param.first)) {
                ptr = &requests_[i]->inputs[rank_].at(param.first);
                break;
            }
        }
        if (ptr) {
            const auto& ref   = *ptr;
            auto        shape = ref.shape;
            FT_CHECK(shape[0] == 1);
            shape[0]                = batch_size_;
            const int size_in_bytes = ref.sizeBytes();
            check_cuda_error(cudaMemsetAsync(param.second, 0, size_in_bytes * batch_size_, stream_));
            for (int i = 0; i < batch_size_; ++i) {
                if (requests_[i]->inputs[rank_].isExist(param.first)) {
                    auto& src = requests_[i]->inputs[rank_].at(param.first);
                    FT_CHECK(ref.shape == src.shape);
                    check_cuda_error(cudaMemcpyAsync((uint8_t*)param.second + size_in_bytes * i,
                                                     src.getPtr<void>(),
                                                     size_in_bytes,
                                                     cudaMemcpyDefault,
                                                     stream_));
                }
            }
            inputs.insert({param.first, {ref.where, ref.type, shape, param.second}});
            if (debug_ && rank_ == 0) {
                FT_LOG_INFO("[initializeSampling] %s", format({param.first, inputs.at(param.first)}).c_str());
            }
        }
    }

    inputs_ = std::move(inputs);

    llama_->dynamic_decode_layer_->setup(batch_size_, 1, &inputs_);

    for (int i = 0; i < batch_size_; ++i) {
        // recover random states if not a new request or new request w/o "random_seed"
        if (i < batch_size_ - infer_request_count || !requests_[i]->inputs[rank_].isExist("random_seed")) {
            check_cuda_error(cudaMemcpyAsync(llama_->dynamic_decode_layer_->topk_curandstate_buf() + i,
                                             (curandState_t*)topk_curandstate_buf_ + i,
                                             sizeof(curandState_t),
                                             cudaMemcpyDefault,
                                             stream_));
            check_cuda_error(cudaMemcpyAsync(llama_->dynamic_decode_layer_->topp_curandstate_buf() + i,
                                             (curandState_t*)topp_curandstate_buf_ + i,
                                             sizeof(curandState_t),
                                             cudaMemcpyDefault,
                                             stream_));
        }
    }

    handleOptArg(&inputs_, "end_id", end_ids_buf_, llama_->end_id_, batch_size_);
    cudaStreamSynchronize(0);
}

template<typename T>
void LlamaBatch<T>::initializeGeneration()
{
    max_context_len_ = *std::max_element(h_context_length_buf_, h_context_length_buf_ + batch_size_);

    check_cuda_error(cudaMemsetAsync(token_ids_buf_, 0, sizeof(int) * batch_size_ * session_len_ * 2, stream_));
    invokeTransposeAxis01(token_ids_buf_, output_ids_buf_, batch_size_, session_len_, 1, stream_);
    sync_check_cuda_error();

    // token_ids_buf_[s, b]
    // ABCDe            ABCDe     e
    // ABCDEFGHIJk      ABCDEFGHIJk
    // ABCDEFGHi    ->  ABCDEFGHi i
    // ABCDEFGh         ABCDEFGh  h
    // ABCd             ABCd      d
    for (int i = 0; i < batch_size_; ++i) {
        auto token_ids = token_ids_buf_ + i;
        auto p_src     = h_context_length_buf_[i] - 1;
        auto p_dst     = max_context_len_ - 1;
        if (p_src != p_dst) {  // dst and src of `cudaMemcpyAsync` must not overlap
            check_cuda_error(cudaMemcpyAsync(token_ids + p_dst * batch_size_,
                                             token_ids + p_src * batch_size_,
                                             sizeof(int),
                                             cudaMemcpyDefault,
                                             stream_));
        }
    }

    check_cuda_error(cudaMemcpyAsync(
        context_length_buf_, h_context_length_buf_, sizeof(int) * batch_size_, cudaMemcpyDefault, stream_));
    check_cuda_error(cudaMemcpyAsync(
        k_cache_ptr_buf_, h_k_cache_ptr_buf_, sizeof(uintptr_t) * batch_size_, cudaMemcpyDefault, stream_));
    check_cuda_error(cudaMemcpyAsync(
        v_cache_ptr_buf_, h_v_cache_ptr_buf_, sizeof(uintptr_t) * batch_size_, cudaMemcpyDefault, stream_));

    check_cuda_error(
        cudaMemcpyAsync(sequence_lengths_, context_length_buf_, sizeof(int) * batch_size_, cudaMemcpyDefault, stream_));
    // `sequence_lengths_` will be increased by dynamic decode
AllentDan's avatar
AllentDan committed
410
    // note that in decoder and in output "sequence length" has different semantic
Li Zhang's avatar
Li Zhang committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
    // - in decoder it means length of sequence that has kv cache already computed
    // - in output it means length of all tokens (the last generated token does not have k/v cache computed yet)
    invokePlusScalar(sequence_lengths_, -1, batch_size_, stream_);
    sync_check_cuda_error();

    // total_padding_count_
    // decoding starts at max_context_len
    check_cuda_error(cudaMemsetAsync(total_padding_count_, 0, sizeof(int) * batch_size_, stream_));
    invokeUpdatePaddingCount(total_padding_count_,  //
                             context_length_buf_,
                             max_context_len_,
                             batch_size_,
                             1,
                             stream_);
    sync_check_cuda_error();

    // seq_limit_len_, will be compared to `step` instead of `sequence_length`, so padding len should be accounted for
    for (int i = 0; i < batch_size_; ++i) {
        h_seq_limit_len_[i] = request_seq_len_limit_[i] + (max_context_len_ - h_context_length_buf_[i]);
        // mask finished sequences
        h_finished_buf_[i] = max_context_len_ >= h_seq_limit_len_[i];
    }
    check_cuda_error(
        cudaMemcpyAsync(seq_limit_len_, h_seq_limit_len_, sizeof(uint32_t) * batch_size_, cudaMemcpyDefault, stream_));
    check_cuda_error(
        cudaMemcpyAsync(finished_buf_, h_finished_buf_, sizeof(bool) * batch_size_, cudaMemcpyDefault, stream_));

    // ! range of step_ [1, 2 * session_len]
    // consider a sequence with context_len == session_len and another sequence with context_len == 1 and
    // request_output_len == session_len - 1 => step_ will loop in [session_len, 2 * session_len)
    step_ = max_context_len_;

    if (rank_ == 0) {
        FT_LOG_INFO("[initGen] batch_size = %d", (int)batch_size_);
        FT_LOG_INFO("[initGen] max_context_len = %d", (int)max_context_len_);

        FT_LOG_INFO("[initGen] slot  sequence_id  context_len  seq_limit_len  finished");
        for (int i = 0; i < batch_size_; ++i) {
            FT_LOG_INFO("[initGen] %4d  %11ld  %11d  %13d  %8d",
                        i,
                        (long)cached_seq_[i].id,
                        h_context_length_buf_[i],
                        (int)h_seq_limit_len_[i],
                        (int)h_finished_buf_[i]);
        }
    }
}

template<typename T>
bool LlamaBatch<T>::generate()
{
    constexpr int kLogInterval = 10;
    if (rank_ == 0 && (step_ - 1) % kLogInterval == 0) {
        FT_LOG_INFO("------------------------- step = %d -------------------------", step_ - 1);
    }

    const bool is_first_step = step_ == max_context_len_;

    std::vector<int> prev;
    if (debug_ && rank_ == 0 && is_first_step) {
        prev.resize(batch_size_);
        cudaMemcpyAsync(prev.data(),
                        token_ids_buf_ + (step_ - 1) * batch_size_,
                        sizeof(int) * batch_size_,
                        cudaMemcpyDefault,
                        stream_);
    }

    // embeddingLookup(step_ - 1);
    llama_->embeddingLookup(decoder_input_buf_,  //
                            token_ids_buf_,
                            batch_size_,
                            step_ - 1);

    llama_->decoderForward(decoder_output_buf_,
                           k_cache_ptr_buf_,
                           v_cache_ptr_buf_,
                           decoder_input_buf_,
                           sequence_lengths_,
                           total_padding_count_,
                           finished_buf_,
                           step_,
                           0,
                           session_len_,
                           batch_size_);

    llama_->postDecodeEmbedding(logits_buf_,  //
                                local_logits_buf_,
                                decoder_output_buf_,
                                batch_size_);

    // stop-words & bad-words require the matched tokens to be contiguous, so item size > 1 is
    // not supported yet.
    bool should_stop{};
    llama_->dynamicDecode(token_ids_buf_,
                          finished_buf_,
                          sequence_lengths_,
                          &should_stop,
                          &inputs_,
                          &outputs_,
                          logits_buf_,
                          seq_limit_len_,
                          context_length_buf_,
                          end_ids_buf_,
                          step_,
                          0,
                          max_context_len_,
                          session_len_ * 2,
                          batch_size_);

    if (debug_ && rank_ == 0) {
        std::vector<int> curr(batch_size_);

        cudaMemcpyAsync(
            curr.data(), token_ids_buf_ + step_ * batch_size_, sizeof(int) * batch_size_, cudaMemcpyDefault, stream_);
        cudaStreamSynchronize(stream_);

        if (is_first_step) {
            std::stringstream sprev;
            for (int k = 0; k < prev.size(); ++k) {
                sprev << std::setw(6) << prev[k];
            }
            FT_LOG_INFO("[ lookup ] step = %d, [%s]", step_ - 1, sprev.str().c_str());
        }

        std::stringstream scurr;
        for (int k = 0; k < curr.size(); ++k) {
            scurr << std::setw(6) << curr[k];
        }
        FT_LOG_INFO("[generate] step = %d, [%s]", step_ - 1, scurr.str().c_str());
    }

    ////////////////////////////////////////////////
    /// ! increase the step counter
    ++step_;

    return !should_stop;
}

template<typename T>
void LlamaBatch<T>::initialize(const std::vector<std::shared_ptr<Request>>& infer_requests)
{
    FT_CHECK(batch_size_ + infer_requests.size() <= max_batch_size_);

    const int infer_request_count = infer_requests.size();

    allocateBuffer(batch_size_ + infer_request_count, session_len_);

    // handle infer requests
    std::vector<int>       tmp_input_length(infer_request_count);
    std::vector<CachedSeq> tmp_cached_seq;
    tmp_cached_seq.reserve(infer_request_count);

    int tmp_max_input_length = 0;
    for (int i = 0; i < infer_request_count; ++i) {
        auto& r = *infer_requests[i];

        LlamaCacheManager::Sequence seq{};
        if (r.start_flag) {
            seq = llama_->kv_cache_mgr_->create(r.id, stream_);
        }
        else {
            seq = llama_->kv_cache_mgr_->fetch(r.id, stream_);
        }

        const int step = r.inputs[rank_].getVal<int>("step", -1);
        if (step >= 0) {
            if (step <= seq.token_ids.size()) {
                seq.token_ids.resize(step);
                seq.cache_len = std::min(seq.cache_len, (size_t)step);
            }
            else if (rank_ == 0) {
                FT_LOG_WARNING("[initialize] Skipping invalid step (%d) setting for ID %ld", step, (long)seq.id);
            }
        }

        // input length with missing cache accounted for
        int actual_input_len = r.inputs[rank_].getVal<int>("input_lengths") + (seq.token_ids.size() - seq.cache_len);

        // insert `start_id` for empty sequences
        if (seq.token_ids.empty() && actual_input_len == 0) {
            seq.token_ids.push_back(llama_->start_id_);
            seq.cache_len    = 0;
            actual_input_len = seq.token_ids.size() - seq.cache_len;
        }

        tmp_input_length[i] = actual_input_len;

        tmp_max_input_length = std::max((int)tmp_max_input_length, actual_input_len);
        tmp_cached_seq.push_back(std::move(seq));
    }

    FT_CHECK(tmp_max_input_length > 0);
    const int max_input_length = tmp_max_input_length;

    // arrange requests in ascending order w.r.t actual input lengths, so that requests need context decoding will
    // be together
    {
        std::vector<int> idxs(tmp_input_length.size());
        std::iota(idxs.begin(), idxs.end(), 0);
        std::sort(idxs.begin(), idxs.end(), [&](int i, int j) { return tmp_input_length[i] < tmp_input_length[j]; });
        for (int i = 0; i < idxs.size(); ++i) {
            requests_[batch_size_ + i]   = infer_requests[idxs[i]];
            cached_seq_[batch_size_ + i] = tmp_cached_seq[idxs[i]];
        }
    }

    const int count = batch_size_ + infer_requests.size();

    std::vector<int> tmp_input_len(count);

    for (int i = batch_size_; i < count; ++i) {
        const auto& seq = cached_seq_[i];

        h_input_length_buf_[i] = requests_[i]->inputs[rank_].getVal<int>("input_lengths");
        tmp_input_len[i]       = h_input_length_buf_[i];
        // prepare output ids
        // <--------> max_context_len
        // aaaAAAA
        // bbbbBBBBBB
        // ccCCC
        auto output_ids_ptr = output_ids_buf_ + i * session_len_;

        // clear the persistent buffer to prevent leaking previous conversation
        check_cuda_error(cudaMemsetAsync(output_ids_ptr, 0, sizeof(int) * session_len_, stream_));

        if (!seq.token_ids.empty()) {
            check_cuda_error(cudaMemcpyAsync(output_ids_ptr,  //
                                             seq.token_ids.data(),
                                             sizeof(int) * seq.token_ids.size(),
                                             cudaMemcpyDefault,
                                             stream_));
            output_ids_ptr += seq.token_ids.size();
        }

        if (h_input_length_buf_[i]) {
            auto input_ids_ptr = requests_[i]->inputs[rank_].getPtr<int>("input_ids");
            check_cuda_error(cudaMemcpyAsync(output_ids_ptr,  //
                                             input_ids_ptr,
                                             sizeof(int) * h_input_length_buf_[i],
                                             cudaMemcpyDefault,
                                             stream_));
        }

        if (!requests_[i]->start_flag && !seq.random_state_.empty()) {
            check_cuda_error(cudaMemcpyAsync((curandState_t*)topk_curandstate_buf_ + i,
                                             seq.random_state_.data(),
                                             sizeof(curandState_t),
                                             cudaMemcpyDefault,
                                             stream_));
            check_cuda_error(cudaMemcpyAsync((curandState_t*)topp_curandstate_buf_ + i,
                                             seq.random_state_.data() + sizeof(curandState_t),
                                             sizeof(curandState_t),
                                             cudaMemcpyDefault,
                                             stream_));
        }
    }

    for (int i = batch_size_; i < count; ++i) {
        const auto& seq           = cached_seq_[i];
        const int   missed        = (int)seq.token_ids.size() - seq.cache_len;
        auto        input_ids_buf = input_ids_buf_ + i * session_len_;
        FT_CHECK(missed >= 0);
        if (missed > 0) {
            check_cuda_error(cudaMemcpyAsync(input_ids_buf,  //
                                             seq.token_ids.data() + seq.cache_len,
                                             sizeof(int) * missed,
                                             cudaMemcpyDefault,
                                             stream_));
            input_ids_buf += missed;
        }
        auto& input_ids = requests_[i]->inputs[rank_].at("input_ids");
        check_cuda_error(cudaMemcpyAsync(input_ids_buf,  //
                                         input_ids.getPtr<int>(),
                                         sizeof(int) * h_input_length_buf_[i],
                                         cudaMemcpyDefault,
                                         stream_));
        h_input_length_buf_[i] += missed;
        h_history_length_buf_[i] = seq.cache_len;
        h_context_length_buf_[i] = h_input_length_buf_[i] + h_history_length_buf_[i];

        const int request_output_len = requests_[i]->inputs[rank_].getVal<int>("request_output_len");
        request_seq_len_limit_[i]    = h_context_length_buf_[i] + request_output_len;
        // `length_criterion` sets finish flag when step >= seq_limit_len, however when step == seq_limit_len
        // the actual sequence length is seq_limit_len + 1, hence seq_limit_len must truncated to session_len - 1
        if (request_seq_len_limit_[i] >= session_len_) {
            request_seq_len_limit_[i] = session_len_ - 1;
            if (rank_ == 0) {
                const int trunc_output_len = request_seq_len_limit_[i] - h_context_length_buf_[i];
                FT_LOG_WARNING(
                    "[initialize] [%ld] total sequence length (%d + %d) exceeds session_len (%d), request_output_len is truncated to %d",
                    (long)seq.id,
                    h_context_length_buf_[i],
                    request_output_len,
                    (int)session_len_,
                    trunc_output_len);
            }
        }

        h_k_cache_ptr_buf_[i] = (uint64_t)seq.k_cache;
        h_v_cache_ptr_buf_[i] = (uint64_t)seq.v_cache;
    }

    const int max_context_len = *std::max_element(h_context_length_buf_ + batch_size_, h_context_length_buf_ + count);

    batch_size_      = count;
    max_context_len_ = max_context_len;
    step_            = max_context_len;

    check_cuda_error(
        cudaMemcpyAsync(input_length_buf_, h_input_length_buf_, sizeof(int) * batch_size_, cudaMemcpyDefault, stream_));
    check_cuda_error(cudaMemcpyAsync(
        history_length_buf_, h_history_length_buf_, sizeof(int) * batch_size_, cudaMemcpyDefault, stream_));
    check_cuda_error(cudaMemcpyAsync(
        context_length_buf_, h_context_length_buf_, sizeof(int) * batch_size_, cudaMemcpyDefault, stream_));
    check_cuda_error(cudaMemcpyAsync(
        k_cache_ptr_buf_, h_k_cache_ptr_buf_, sizeof(uintptr_t) * batch_size_, cudaMemcpyDefault, stream_));
    check_cuda_error(cudaMemcpyAsync(
        v_cache_ptr_buf_, h_v_cache_ptr_buf_, sizeof(uintptr_t) * batch_size_, cudaMemcpyDefault, stream_));

    if (llama_->tensor_para_.rank_ == 0) {
        FT_LOG_INFO("[init] infer_request_count = %d", (int)infer_request_count);
        FT_LOG_INFO("[init] batch_size = %d", (int)batch_size_);
        FT_LOG_INFO("[init] session_len = %d", (int)session_len_);
        FT_LOG_INFO("[init] max_input_length = %d", (int)max_input_length);
        FT_LOG_INFO("[init] max_context_len = %d", (int)max_context_len);
        FT_LOG_INFO(
            "[init] slot  sequence_id  history_len  input_len  context_len  tmp_input_len  token_ids.size  cache_len");
        for (int i = batch_size_ - infer_request_count; i < batch_size_; ++i) {
            FT_LOG_INFO("[init] %4d  %11ld  %11d  %9d  %11d  %13d  %14d  %9d",
                        i,
                        (int)cached_seq_[i].id,
                        h_history_length_buf_[i],
                        h_input_length_buf_[i],
                        h_context_length_buf_[i],
                        tmp_input_len[i],
                        (int)cached_seq_[i].token_ids.size(),
                        (int)cached_seq_[i].cache_len);
        }
    }
}

template<typename T>
void LlamaBatch<T>::contextDecode()
{
    int base = -1;
    for (int i = 0; i < batch_size_; ++i) {
        if (h_input_length_buf_[i] > 1) {
            base = i;
            break;
        }
    }
    if (base >= 0) {
        check_cuda_error(cudaStreamSynchronize(stream_));
        const auto tick = std::chrono::high_resolution_clock::now();

        const int context_decode_count = batch_size_ - base;
        if (rank_ == 0) {
            FT_LOG_INFO("[decodeContext] base = %d, count = %d", base, context_decode_count);
        }
        invokePlusScalar(input_length_buf_ + base, -1, context_decode_count, stream_);
        invokePlusScalar(context_length_buf_ + base, -1, context_decode_count, stream_);

        auto get_input_len   = [this](int index) { return h_input_length_buf_[index] - 1; };
        auto get_context_len = [this](int index) { return h_context_length_buf_[index] - 1; };

        auto token_num       = get_input_len(base);
        auto max_input_len   = get_input_len(base);
        auto max_context_len = get_context_len(base);
        auto offset          = base;
        for (int i = offset + 1; i <= batch_size_; ++i) {
            if (i == batch_size_ || token_num + h_context_length_buf_[i] > max_context_token_num_) {
                const int context_decode_batch_size = i - offset;
                if (rank_ == 0) {
                    FT_LOG_INFO(
                        "[decodeContext] offset = %d, batch_size = %d, token_num = %d, max_input_len = %d, max_context_len = %d",
                        base,
                        context_decode_batch_size,
                        token_num,
                        max_input_len,
                        max_context_len);
                }
                // construct context_decoder_ids w/o padding
                // aaaa____
                // bb______ -> aaaabbcccccccc
                // cccccccc
                auto context_decoder_ids = context_decoder_ids_buf_;
                for (int j = offset; j < i; ++j) {
                    check_cuda_error(cudaMemcpyAsync(context_decoder_ids,
                                                     input_ids_buf_ + j * session_len_,
                                                     sizeof(int) * get_input_len(j),
                                                     cudaMemcpyDefault,
                                                     stream_));
                    context_decoder_ids += get_input_len(j);
                }
                llama_->contextDecode(nullptr,
                                      k_cache_ptr_buf_ + offset,
                                      v_cache_ptr_buf_ + offset,
                                      context_decoder_input_buf_,
                                      nullptr,
                                      context_decoder_ids_buf_,
                                      input_length_buf_ + offset,
                                      history_length_buf_ + offset,
                                      context_length_buf_ + offset,
                                      token_num,
                                      max_input_len,
                                      max_context_len,
                                      session_len_,
                                      context_decode_batch_size);
                if (i < batch_size_) {
                    token_num       = get_input_len(i);
                    max_input_len   = get_input_len(i);
                    max_context_len = get_context_len(i);
                    offset          = i;
                }
            }
            else {
                token_num += get_input_len(i);
                max_input_len   = std::max(max_input_len, get_input_len(i));
                max_context_len = std::max(max_context_len, get_context_len(i));
            }
        }

        invokePlusScalar(context_length_buf_ + base, 1, context_decode_count, stream_);
        invokePlusScalar(input_length_buf_ + base, 1, context_decode_count, stream_);

        for (int i = offset; i < batch_size_; ++i) {
            h_input_length_buf_[i] = 0;
        }

        check_cuda_error(cudaStreamSynchronize(stream_));
        const auto tock = std::chrono::high_resolution_clock::now();
        if (rank_ == 0) {
            FT_LOG_INFO("[decodeContext] %.2f ms", std::chrono::duration<float, std::milli>(tock - tick).count());
        }
    }
    else if (rank_ == 0) {
        FT_LOG_INFO("[decodeContext] Context decoding is not needed.");
    }
}

template<typename T>
void LlamaBatch<T>::finish()
{
    // secure info needed by `synchronize()`
    check_cuda_error(
        cudaMemcpyAsync(h_finished_buf_, finished_buf_, sizeof(bool) * batch_size_, cudaMemcpyDefault, stream_));
    check_cuda_error(
        cudaMemcpyAsync(h_sequence_lengths_, sequence_lengths_, sizeof(int) * batch_size_, cudaMemcpyDefault, stream_));

    setOutputTensors(step_);

    check_cuda_error(cudaStreamSynchronize(stream_));

    for (int i = 0; i < batch_size_; ++i) {
        FT_CHECK(requests_[i] != nullptr);
        if (requests_[i]->stream_cb && rank_ == 0) {
            requests_[i]->stream_cb(&requests_[i]->outputs[rank_].get());
        }
    }

    if (debug_ && rank_ == 0) {
        std::stringstream ss;
        for (int i = 0; i < batch_size_; ++i) {
            ss << (i ? ", " : "") << "(" << h_sequence_lengths_[i] << "," << h_finished_buf_[i] << ")";
        }
        FT_LOG_INFO("[finish] [%s]", ss.str().c_str());
    }

    for (int i = 0; i < batch_size_; ++i) {
        if (h_finished_buf_[i]) {
            finishRequest(i, false);
            ++finished_count_;
        }
    }
}

template<typename T>
void LlamaBatch<T>::synchronize()
{
    // compact
    int idx = 0;
    for (int i = 0; i < batch_size_; ++i) {
        if (requests_[i]) {
            h_input_length_buf_[idx]   = 0;
            h_history_length_buf_[idx] = 0;

            h_context_length_buf_[idx] = h_sequence_lengths_[i] + 1;
            h_sequence_lengths_[idx]   = h_context_length_buf_[idx];

            check_cuda_error(cudaMemcpyAsync((curandState_t*)topk_curandstate_buf_ + idx,
                                             llama_->dynamic_decode_layer_->topk_curandstate_buf() + i,
                                             sizeof(curandState_t),
                                             cudaMemcpyDefault,
                                             stream_));
            check_cuda_error(cudaMemcpyAsync((curandState_t*)topp_curandstate_buf_ + idx,
                                             llama_->dynamic_decode_layer_->topp_curandstate_buf() + i,
                                             sizeof(curandState_t),
                                             cudaMemcpyDefault,
                                             stream_));

            if (i != idx) {
                h_finished_buf_[idx]        = h_finished_buf_[i];
                request_seq_len_limit_[idx] = request_seq_len_limit_[i];

                h_k_cache_ptr_buf_[idx] = h_k_cache_ptr_buf_[i];
                h_v_cache_ptr_buf_[idx] = h_v_cache_ptr_buf_[i];

                requests_[idx]   = std::move(requests_[i]);
                cached_seq_[idx] = std::move(cached_seq_[i]);
                check_cuda_error(cudaMemcpyAsync(output_ids_buf_ + idx * session_len_,
                                                 output_ids_buf_ + i * session_len_,
                                                 sizeof(int) * h_context_length_buf_[idx],
                                                 cudaMemcpyDefault,
                                                 stream_));
            }
            ++idx;
        }
    }
    batch_size_ = idx;

    if (rank_ == 0) {
        FT_LOG_INFO("[synchronize] batch_size = %d", (int)batch_size_);
    }

    finished_count_ = 0;
}

template<typename T>
void LlamaBatch<T>::setOutputTensors(int max_gen_step)
{
    // [s,b] -> [b,s] and skip padding in [context_len, max_context_len)
    invokeGatherOutput(output_ids_buf_,
                       token_ids_buf_,
                       context_length_buf_,
                       max_context_len_,
                       max_gen_step,
                       session_len_,
                       batch_size_,
                       stream_);
    sync_check_cuda_error();

    /// TODO: fuse the loop into a single kernel
    for (int i = 0; i < batch_size_; ++i) {
        if (requests_[i]) {
            auto& output_ids      = requests_[i]->outputs[rank_].at("output_ids");
            auto& sequence_length = requests_[i]->outputs[rank_].at("sequence_length");
            check_cuda_error(cudaMemcpyAsync(output_ids.getPtr<int>(),
                                             output_ids_buf_ + i * session_len_,
                                             sizeof(int) * output_ids.shape.at(2),
                                             cudaMemcpyDefault,
                                             stream_));
            check_cuda_error(cudaMemcpyAsync(
                sequence_length.getPtr<int>(), sequence_lengths_ + i, sizeof(int), cudaMemcpyDefault, stream_));
            if (max_gen_step > max_context_len_) {  // +1 for newly generated token
                invokePlusScalar(sequence_length.getPtr<int>(), 1, 1, stream_);
            }
        }
    }
}

template<typename T>
void LlamaBatch<T>::finishRequest(int index, bool force_end)
{
    if (rank_ == 0) {
        FT_LOG_INFO("[finishRequest] slot = %d, id = %lu", index, (long)requests_[index]->id);
    }

    if (debug_ && rank_ == 0) {
        std::vector<int> tokens(h_sequence_lengths_[index] + 1);
        cudaMemcpyAsync(tokens.data(),
                        output_ids_buf_ + index * session_len_,
                        sizeof(int) * tokens.size(),
                        cudaMemcpyDefault,
                        stream_);
        cudaStreamSynchronize(stream_);
        std::stringstream ss;
        for (const auto& t : tokens) {
            ss << " " << t;
        }
        FT_LOG_INFO("[finishRequest] slot %d, tokens [%s]", index, ss.str().c_str());
    }

    auto&      output_ids_tensor = requests_[index]->outputs[rank_].at("output_ids");
    const auto output_ids_data   = output_ids_tensor.getPtr<int>();
    if (requests_[index]->end_flag || force_end) {
        llama_->kv_cache_mgr_->erase(requests_[index]->id);
    }
    else {
        // the last generated token is not processed by decoder thus dont have k/v cache
        const int n_steps    = step_ - max_context_len_;
        const int cache_len  = h_sequence_lengths_[index];
        const int output_len = n_steps > 0 ? cache_len + 1 : cache_len;

        auto& seq = cached_seq_[index];

        seq.cache_len = cache_len;

        // update token IDs
        seq.token_ids.resize(output_len);
        check_cuda_error(cudaMemcpyAsync(
            seq.token_ids.data(), output_ids_data, sizeof(int) * output_len, cudaMemcpyDefault, stream_));

        // update random states
        seq.random_state_.resize(sizeof(curandState_t) * 2);
        check_cuda_error(cudaMemcpyAsync(seq.random_state_.data(),
                                         llama_->dynamic_decode_layer_->topk_curandstate_buf() + index,
                                         sizeof(curandState_t),
                                         cudaMemcpyDefault,
                                         stream_));
        check_cuda_error(cudaMemcpyAsync(seq.random_state_.data() + sizeof(curandState_t),
                                         llama_->dynamic_decode_layer_->topp_curandstate_buf() + index,
                                         sizeof(curandState_t),
                                         cudaMemcpyDefault,
                                         stream_));

        check_cuda_error(cudaStreamSynchronize(stream_));

        llama_->kv_cache_mgr_->update(cached_seq_[index], stream_);
    }

    if (rank_ == 0) {
        requests_[index]->signal.set_value(0);
    }

    requests_[index] = nullptr;
}

template class LlamaBatch<half>;
template class LlamaBatch<float>;

AllentDan's avatar
AllentDan committed
1042
}  // namespace fastertransformer