decoder_masked_multihead_attention.h 6.09 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/*
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once

#include "src/fastertransformer/layers/attention_layers_fp8/AttentionFP8Weight.h"
#include "src/fastertransformer/utils/cuda_bf16_wrapper.h"
#include "src/fastertransformer/utils/cuda_fp8_utils.h"
#include <cuda_fp16.h>
#include <cuda_runtime_api.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

////////////////////////////////////////////////////////////////////////////////////////////////////

#define CHECK_CUDA(call)                                                                                               \
    do {                                                                                                               \
        cudaError_t status_ = call;                                                                                    \
        if (status_ != cudaSuccess) {                                                                                  \
            fprintf(stderr, "CUDA error (%s:%d): %s\n", __FILE__, __LINE__, cudaGetErrorString(status_));              \
            exit(1);                                                                                                   \
        }                                                                                                              \
    } while (0)

////////////////////////////////////////////////////////////////////////////////////////////////////

// The structure of parameters for the masked multihead attention kernel.
//
// We use the following terminology to describe the different dimensions.
//
// B:  Batch size (number of sequences),
// L:  Sequence length,
// D:  Hidden dimension,
// H:  Number of heads,
// Dh: Hidden dimension per head - Dh = D / H.

template<typename T>
struct Multihead_attention_params_base {

    // The output buffer. Dimensions B x D.
    T* out = nullptr;

    // The input Qs and the associated bias. Dimensions B x D and D, resp.
    const T *q = nullptr, *q_bias = nullptr;
    // The input Ks and the associated bias. Dimensions B x D and D, resp.
    const T *k = nullptr, *k_bias = nullptr;
    // The input Vs and the associated bias. Dimensions B x D and D, resp.
    const T *v = nullptr, *v_bias = nullptr;

    // The cache for the Ks. The size must be at least B x L x D.
    T* k_cache = nullptr;
    // The cache for the Vs. The size must be at least B x L x D.
    T* v_cache = nullptr;
    // The indirections to use for cache when beam sampling.
    const int* cache_indir = nullptr;

    // scales
    const float* query_weight_output_scale               = nullptr;
    const float* attention_qk_scale                      = nullptr;
    const float* attention_output_weight_input_scale_inv = nullptr;

    // Stride to handle the case when KQV is a single buffer
    int stride = 0;

    // The batch size.
    int batch_size = 0;
    // The beam width
    int beam_width = 0;
    // The sequence length.
    int memory_max_len = 0;
    // The number of heads (H).
    int num_heads = 0;
    // The hidden dimension per head (Dh).
    int hidden_size_per_head = 0;
    // The per-head latent space reserved for rotary embeddings.
    int rotary_embedding_dim = 0;
    // The maximum length of input sentences.
    int max_input_length = 0;
    // The current timestep. TODO(bhsueh) Check that do we only this param in cross attention?
    int timestep = 0;
    // The current timestep of each sentences (support different timestep for different sentences)

    // The 1.f / sqrt(Dh). Computed on the host.
    float inv_sqrt_dh = 0.0f;

    // Used when we have some input context like gpt
    const int* total_padding_tokens = nullptr;

    const bool* masked_tokens            = nullptr;
    const int*  prefix_prompt_lengths    = nullptr;
    int         max_prefix_prompt_length = 0;

    const T* relative_attention_bias        = nullptr;
    int      relative_attention_bias_stride = 0;
    // The slope per head of linear position bias to attention score (H).
    const T* linear_bias_slopes = nullptr;

    const T*   ia3_key_weights   = nullptr;
    const T*   ia3_value_weights = nullptr;
    const int* ia3_tasks         = nullptr;

    const float* qkv_scale_out       = nullptr;
    const float* attention_out_scale = nullptr;
    int          int8_mode           = 0;
AllentDan's avatar
AllentDan committed
119
120
    float        attention_k_scale   = 0.f;
    float        attention_v_scale   = 0.f;
Li Zhang's avatar
Li Zhang committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
};

template<typename T>
struct Multihead_attention_params: public Multihead_attention_params_base<T> {
    // allows to exist attention eary
    bool* finished = nullptr;

    // required in case of masked attention with different length
    const int* length_per_sample = nullptr;

    T**    k_cache_per_sample         = nullptr;
    T**    v_cache_per_sample         = nullptr;
    size_t kv_cache_per_sample_offset = 0;
    bool   k_cache_interleaved        = true;
};

template<class T>
using Masked_multihead_attention_params = Multihead_attention_params<T>;

////////////////////////////////////////////////////////////////////////////////////////////////////

void masked_multihead_attention(const Masked_multihead_attention_params<float>& params, const cudaStream_t& stream);
void masked_multihead_attention(const Masked_multihead_attention_params<uint16_t>& params, const cudaStream_t& stream);
#ifdef ENABLE_BF16
void masked_multihead_attention(const Masked_multihead_attention_params<__nv_bfloat16>& params,
                                const cudaStream_t&                                     stream);
#endif

////////////////////////////////////////////////////////////////////////////////////////////////////