LlamaDecoderLayerWeight.cc 7.1 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2019-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

Li Zhang's avatar
Li Zhang committed
18
// Modified from
lvhan028's avatar
lvhan028 committed
19
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/turbomind/models/multi_gpu_gpt/ParallelGptDecoderLayerWeight.cc
Li Zhang's avatar
Li Zhang committed
20

lvhan028's avatar
lvhan028 committed
21
22
23
#include "src/turbomind/models/llama/LlamaDecoderLayerWeight.h"
#include "src/turbomind/utils/logger.h"
#include "src/turbomind/utils/memory_utils.h"
Li Zhang's avatar
Li Zhang committed
24

lvhan028's avatar
lvhan028 committed
25
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
26
27

template<typename T>
28
29
30
LlamaDecoderLayerWeight<T>::LlamaDecoderLayerWeight(size_t     head_num,
                                                    size_t     kv_head_num,
                                                    size_t     size_per_head,
Li Zhang's avatar
Li Zhang committed
31
32
33
34
35
                                                    size_t     inter_size,
                                                    WeightType weight_type,
                                                    bool       attn_bias,
                                                    size_t     tensor_para_size,
                                                    size_t     tensor_para_rank):
36
37
38
39
    head_num_(head_num),
    kv_head_num_(kv_head_num),
    size_per_head_(size_per_head),
    hidden_units_(head_num * size_per_head),
Li Zhang's avatar
Li Zhang committed
40
41
    inter_size_(inter_size),
    weight_type_(weight_type),
Li Zhang's avatar
Li Zhang committed
42
    attn_bias_(attn_bias),
Li Zhang's avatar
Li Zhang committed
43
44
45
    tensor_para_size_(tensor_para_size),
    tensor_para_rank_(tensor_para_rank)
{
Li Zhang's avatar
Li Zhang committed
46
    self_attn_weights.qkv.input_dims  = hidden_units_;
47
    self_attn_weights.qkv.output_dims = (head_num + 2 * kv_head_num) * size_per_head / tensor_para_size_;
Li Zhang's avatar
Li Zhang committed
48
    self_attn_weights.qkv.type        = weight_type;
Li Zhang's avatar
Li Zhang committed
49
50
51
52
53

    self_attn_weights.output.input_dims  = hidden_units_ / tensor_para_size_;
    self_attn_weights.output.output_dims = hidden_units_;
    self_attn_weights.output.type        = weight_type;

Li Zhang's avatar
Li Zhang committed
54
55
56
    ffn_weights.gating.input_dims  = hidden_units_;
    ffn_weights.gating.output_dims = inter_size_ / tensor_para_size_;
    ffn_weights.gating.type        = weight_type;
Li Zhang's avatar
Li Zhang committed
57
58
59
60

    ffn_weights.intermediate.input_dims  = hidden_units_;
    ffn_weights.intermediate.output_dims = inter_size_ / tensor_para_size_;
    ffn_weights.intermediate.type        = weight_type;
Li Zhang's avatar
Li Zhang committed
61
62
63
64

    ffn_weights.output.input_dims  = inter_size_ / tensor_para_size_;
    ffn_weights.output.output_dims = hidden_units_;
    ffn_weights.output.type        = weight_type;
Li Zhang's avatar
Li Zhang committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    mallocWeights();
}

template<typename T>
void freeWeights(LlamaDenseWeight<T>& weights)
{
    cudaFree(weights.kernel);
    cudaFree(weights.bias);
    cudaFree(weights.scales);
    cudaFree(weights.zeros);

    weights.kernel = nullptr;
    weights.bias   = nullptr;
    weights.scales = nullptr;
    weights.zeros  = nullptr;
}

template<typename T>
void mallocWeights(LlamaDenseWeight<T>& weights, bool bias)
{
    if (bias) {
        deviceMalloc((T**)&weights.bias, weights.output_dims);
    }
    const size_t bit_size = getBitSize(weights.type);
    if (bit_size >= 16) {  // fp16, fp32
        deviceMalloc((T**)&weights.kernel, weights.input_dims * weights.output_dims);
    }
    else {  // int8, int4
        const int factor = sizeof(float) * 8 / bit_size;
        FT_CHECK(weights.input_dims % factor == 0);
        deviceMalloc((float**)&weights.kernel, weights.input_dims / factor * weights.output_dims);
        deviceMalloc((T**)&weights.scales, weights.output_dims);
        deviceMalloc((T**)&weights.zeros, weights.output_dims);
    }
}

template<typename T>
void loadWeights(LlamaDenseWeight<T>& w, std::string prefix, int rank, FtCudaDataType model_file_type)
{
    prefix += "." + std::to_string(rank);
    const auto type = model_file_type;

    if (w.bias) {
        loadWeightFromBin((T*)w.bias, {w.output_dims}, prefix + ".bias", type);
    }
    const size_t bit_size = getBitSize(w.type);
    if (bit_size >= 16) {  // fp16, fp32
        loadWeightFromBin((T*)w.kernel, {w.input_dims, w.output_dims}, prefix + ".weight", type);
    }
    else {  // int8, int4
        const int factor = sizeof(float) * 8 / bit_size;
        FT_CHECK(w.input_dims % factor == 0);
        const auto f32_type = FtCudaDataType::FP32;
        loadWeightFromBin((float*)w.kernel, {w.input_dims / factor, w.output_dims}, prefix + ".qweight", f32_type);
        loadWeightFromBin((T*)w.scales, {w.output_dims}, prefix + ".scales", type);
        loadWeightFromBin((T*)w.zeros, {w.output_dims}, prefix + ".zeros", type);
    }
}

template<typename T>
void LlamaDecoderLayerWeight<T>::mallocWeights()
{
    deviceMalloc((T**)&self_attn_norm_weights, hidden_units_);
    deviceMalloc((T**)&ffn_norm_weights, hidden_units_);

lvhan028's avatar
lvhan028 committed
130
131
    turbomind::mallocWeights(self_attn_weights.qkv, attn_bias_);
    turbomind::mallocWeights(self_attn_weights.output, attn_bias_);
Li Zhang's avatar
Li Zhang committed
132

lvhan028's avatar
lvhan028 committed
133
134
135
    turbomind::mallocWeights(ffn_weights.gating, false);
    turbomind::mallocWeights(ffn_weights.intermediate, false);
    turbomind::mallocWeights(ffn_weights.output, false);
Li Zhang's avatar
Li Zhang committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
}

template<typename T>
LlamaDecoderLayerWeight<T>::~LlamaDecoderLayerWeight()
{
    cudaFree((void*)self_attn_norm_weights);
    cudaFree((void*)ffn_norm_weights);

    freeWeights(self_attn_weights.qkv);
    freeWeights(self_attn_weights.output);
    freeWeights(ffn_weights.gating);
    freeWeights(ffn_weights.intermediate);
    freeWeights(ffn_weights.output);
}

template<typename T>
void LlamaDecoderLayerWeight<T>::loadModel(std::string dir_path, FtCudaDataType model_file_type)
{
    const auto rank_spec = std::to_string(tensor_para_rank_);
    const auto type      = model_file_type;

    loadWeightFromBin(
        (T*)self_attn_norm_weights, {hidden_units_}, dir_path + ".attention_norm.weight", model_file_type);
    loadWeightFromBin((T*)ffn_norm_weights, {hidden_units_}, dir_path + ".ffn_norm.weight", model_file_type);

    loadWeights(self_attn_weights.qkv, dir_path + ".attention.w_qkv", tensor_para_rank_, type);
    loadWeights(self_attn_weights.output, dir_path + ".attention.wo", tensor_para_rank_, type);
    loadWeights(ffn_weights.gating, dir_path + ".feed_forward.w1", tensor_para_rank_, type);
    loadWeights(ffn_weights.intermediate, dir_path + ".feed_forward.w3", tensor_para_rank_, type);
    loadWeights(ffn_weights.output, dir_path + ".feed_forward.w2", tensor_para_rank_, type);
166
167
168

    // load kv_cache quant scale
    // if file not exist, get empty vector
AllentDan's avatar
AllentDan committed
169
170
    std::string   scale_path = dir_path + ".past_kv_scale." + rank_spec + ".weight";
    std::ifstream in(scale_path, std::ios::in);
171
172
173
    if (in.is_open()) {
        in.close();
        self_attn_weights.past_kv_scale = loadArrayFromBin({2}, scale_path);
AllentDan's avatar
AllentDan committed
174
175
    }
    else {
176
177
        self_attn_weights.past_kv_scale = {};
    }
Li Zhang's avatar
Li Zhang committed
178
179
180
181
182
}

template struct LlamaDecoderLayerWeight<float>;
template struct LlamaDecoderLayerWeight<half>;

lvhan028's avatar
lvhan028 committed
183
}  // namespace turbomind