LlamaDecoderSelfAttentionLayer.cc 13.3 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
/*
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2019-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// Modified from https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/layers/attention_layers/DecoderSelfAttentionLayer.cc


#include "src/fastertransformer/models/llama/LlamaDecoderSelfAttentionLayer.h"
#include "src/fastertransformer/kernels/decoder_masked_multihead_attention.h"
#include "src/fastertransformer/models/llama/LlamaNcclGuard.h"
#include "src/fastertransformer/models/llama/llama_kernels.h"
#include "src/fastertransformer/models/llama/llama_utils.h"
#include "src/fastertransformer/utils/cuda_utils.h"
#include "src/fastertransformer/utils/nvtx_utils.h"
#include <string>
// #include <glog/logging.h>

namespace fastertransformer {

template<typename T>
struct SATypeConverter {
    using Type = T;
};

template<>
struct SATypeConverter<half> {
    using Type = uint16_t;
};

template<typename T>
static inline void fusedQKV_masked_attention_dispatch(const T*     qkv_buf,
                                                      const T*     qkv_bias,
                                                      const T*     relative_attention_bias,
                                                      T*           key_cache,
                                                      T*           value_cache,
                                                      T**          k_cache_per_sample,
                                                      T**          v_cache_per_sample,
                                                      size_t       kv_cache_per_sample_offset,
                                                      const int*   cache_indir,
                                                      T*           context_buf,
                                                      const bool*  finished,
                                                      const int*   sequence_lengths,
                                                      const int    max_batch_size,
                                                      const int    inference_batch_size,
                                                      const int    beam_width,
                                                      const int    head_num,
                                                      const int    size_per_head,
                                                      const int    rotary_embedding_dim,
                                                      const int    memory_max_len,
                                                      const int*   prefix_prompt_lengths,
                                                      const int    max_prefix_prompt_length,
                                                      const int    max_input_len,
                                                      const int*   total_padding_tokens,
                                                      const int    step,
                                                      const float  q_scaling,
                                                      const int    relative_attention_bias_stride,
                                                      const T*     linear_bias_slopes,
                                                      const bool*  masked_tokens,
                                                      const int*   ia3_tasks,
                                                      const T*     ia3_key_weights,
                                                      const T*     ia3_value_weights,
                                                      const float* qkv_scale_out,
                                                      const float* attention_out_scale,
                                                      const int    int8_mode,
                                                      cudaStream_t stream)
{
    using DataType = typename SATypeConverter<T>::Type;
    // Prepare the parameters.
    Masked_multihead_attention_params<DataType> params;
    memset(&params, 0, sizeof(params));
    int hidden_units = head_num * size_per_head;
    if (qkv_bias != nullptr) {
        params.q_bias = reinterpret_cast<const DataType*>(qkv_bias);
        params.k_bias = reinterpret_cast<const DataType*>(qkv_bias) + hidden_units;
        params.v_bias = reinterpret_cast<const DataType*>(qkv_bias) + 2 * hidden_units;
    }
    else {
        params.q_bias = nullptr;
        params.k_bias = nullptr;
        params.v_bias = nullptr;
    }

    // Set the output buffer.
    params.out = reinterpret_cast<DataType*>(context_buf);

    // Set the input buffers.
    params.q = reinterpret_cast<const DataType*>(qkv_buf);
    if (int8_mode != 2) {
        params.k = reinterpret_cast<const DataType*>(qkv_buf) + hidden_units;
        params.v = reinterpret_cast<const DataType*>(qkv_buf) + 2 * hidden_units;
    }
    else {
        params.k = reinterpret_cast<const DataType*>(reinterpret_cast<const int8_t*>(qkv_buf) + hidden_units);
        params.v = reinterpret_cast<const DataType*>(reinterpret_cast<const int8_t*>(qkv_buf) + 2 * hidden_units);
    }
    params.stride   = 3 * hidden_units;
    params.finished = const_cast<bool*>(finished);

    params.k_cache                    = reinterpret_cast<DataType*>(key_cache);
    params.v_cache                    = reinterpret_cast<DataType*>(value_cache);
    params.k_cache_per_sample         = reinterpret_cast<DataType**>(k_cache_per_sample);
    params.v_cache_per_sample         = reinterpret_cast<DataType**>(v_cache_per_sample);
    params.kv_cache_per_sample_offset = kv_cache_per_sample_offset;
    params.k_cache_interleaved        = false;
    params.cache_indir                = cache_indir;
    params.batch_size                 = inference_batch_size;
    params.beam_width                 = beam_width;
    params.memory_max_len             = memory_max_len;
    params.prefix_prompt_lengths      = prefix_prompt_lengths;
    params.max_prefix_prompt_length   = max_prefix_prompt_length;
    params.length_per_sample          = sequence_lengths;  // max_input_length + current output length
    // timestep adding max_prefix_prompt_length for shared memory size calculation and rotary embedding computation
    params.timestep             = step + max_prefix_prompt_length - 1;
    params.num_heads            = head_num;
    params.hidden_size_per_head = size_per_head;
    params.rotary_embedding_dim = rotary_embedding_dim;
    // Note: keep norm factor (sqrt(K_dim)) when adopting megatron T5 structure (may adjust)
    params.inv_sqrt_dh = 1.F / (sqrtf((float)params.hidden_size_per_head) * q_scaling);

    params.total_padding_tokens = total_padding_tokens;
    if (relative_attention_bias != nullptr) {
        params.relative_attention_bias = reinterpret_cast<const DataType*>(relative_attention_bias);
    }
    params.relative_attention_bias_stride = relative_attention_bias_stride;
    params.masked_tokens                  = masked_tokens;

    // The slope of linear position bias per head, e.g., ALiBi.
    if (linear_bias_slopes != nullptr) {
        params.linear_bias_slopes = reinterpret_cast<const DataType*>(linear_bias_slopes);
    }
    params.max_input_length = max_input_len;

    params.ia3_tasks         = ia3_tasks;
    params.ia3_key_weights   = reinterpret_cast<const DataType*>(ia3_key_weights);
    params.ia3_value_weights = reinterpret_cast<const DataType*>(ia3_value_weights);

    params.int8_mode = int8_mode;
    if (int8_mode == 2) {
        params.qkv_scale_out       = qkv_scale_out;
        params.attention_out_scale = attention_out_scale;
    }

    PUSH_RANGE("scaled dot-product fusion");
    masked_multihead_attention(params, stream);
    POP_RANGE;
}

template<typename T>
void LlamaDecoderSelfAttentionLayer<T>::allocateBuffer(size_t batch_size, int key_len, int max_memory_len)
{
    FT_LOG_DEBUG(__PRETTY_FUNCTION__);
    qkv_buf_ =
        reinterpret_cast<T*>(allocator_->reMalloc(qkv_buf_, sizeof(T) * batch_size * 3 * local_hidden_units_, false));
    context_buf_ =
        reinterpret_cast<T*>(allocator_->reMalloc(context_buf_, sizeof(T) * batch_size * local_hidden_units_, false));

    is_allocate_buffer_ = true;
}

template<typename T>
void LlamaDecoderSelfAttentionLayer<T>::freeBuffer()
{
    if (is_allocate_buffer_) {
        allocator_->free((void**)(&qkv_buf_));
        allocator_->free((void**)(&context_buf_));
        // allocator_->free((void**)(&k_cache_buf_));
        // allocator_->free((void**)(&v_cache_buf_));
        is_allocate_buffer_ = false;
    }
}

template<typename T>
void LlamaDecoderSelfAttentionLayer<T>::forward(TensorMap*                     output_tensors,
                                                const TensorMap*               input_tensors,
                                                const LlamaAttentionWeight<T>* weights)
{
    /**
     * input tensors:
     *    \param input_query [batch_size, hidden_units],
     *    \param sequence_lengths [batch_size]
     *    \param step [1] on cpu
     *    \param finished [batch_size]
     *    \param total_padding_tokens [batch_size]
     *    \param layer_id [1], int on cpu
     *    \param max_seq_len [1] on cpu
     *    \param masked_tokens [batch_size, memory_len], (optional), NOT USED YET
     *    \param cache_indirection [batch_size / beam_width, beam_width, memory_max_len] (optional)
     *
     * output tensors:
     *    \param attention_output [batch_size, hidden_units],
     *    \param key_cache [batch, local_head_num, size_per_head / x, memory_max_len, x]
     *    \param value_cache [batch, local_head_num, memory_max_len, size_per_head]
     */

    const T*    input_query_data      = input_tensors->getPtr<T>("input_query");
    const int*  sequence_lengths_data = input_tensors->getPtr<int>("sequence_lengths");
    const int*  total_padding_len     = input_tensors->getPtr<int>("total_padding_tokens");
    const bool* finished_data         = input_tensors->getPtr<bool>("finished", nullptr);
    const bool* masked_tokens_data    = input_tensors->getPtr<bool>("masked_tokens", nullptr);
    const int*  cache_indir           = input_tensors->getPtr<int>("cache_indirection", nullptr);

    T*  hidden_features_data = output_tensors->getPtr<T>("attention_output");
    T** key_cache_ptrs       = output_tensors->getPtr<T*>("key_cache");
    T** value_cache_ptrs     = output_tensors->getPtr<T*>("value_cache");

    const int layer_id = input_tensors->getVal<int>("layer_id");

    const int max_seq_len = input_tensors->getVal<int>("max_seq_len");
    const int step        = input_tensors->getVal<int>("step");

    const int step_1 = step - 1;

    const int batch_size = input_tensors->at("input_query").shape[0];
    const int beam_width = cache_indir != nullptr ? input_tensors->at("cache_indirection").shape[1] : 1;

    allocateBuffer(batch_size, step, max_seq_len);

    PUSH_RANGE("qkv_gemm");
    linear_.forward(qkv_buf_, input_query_data, batch_size, weights->qkv);
    POP_RANGE;

    const auto kv_cache_layer_offset = layer_id * local_head_num_ * max_seq_len * size_per_head_;
    const int  memory_len            = max_seq_len;

    fusedQKV_masked_attention_dispatch<T>(
        qkv_buf_,
        nullptr,  // query_weight.bias,
        nullptr,  // relative_attention_bias,
        nullptr,
        nullptr,
        key_cache_ptrs,
        value_cache_ptrs,
        kv_cache_layer_offset,
        cache_indir,
        context_buf_,
        finished_data,
        sequence_lengths_data,  // NOTE: current seq len including padding (fixed after meeting the finished id)
        batch_size,
        batch_size,
        beam_width,
        local_head_num_,
        size_per_head_,
        rotary_embedding_dim_,
        memory_len,
        nullptr,  // prefix_prompt_lengths
        0,        // max_prefix_prompt_length
        0,        // max_input_length, not used w/o linear_bias_slopes
        input_tensors->getPtr<int>("total_padding_tokens", nullptr),
        step,
        1.f,      // q_scaling
        0,        // relative_attention_bias_stride
        nullptr,  // linear_bias_slopes
        nullptr,  //  masked_tokens_data,
        nullptr,  // ia3_tasks
        nullptr,  // ia3_key_weights
        nullptr,  // ia3_value_weights
        nullptr,  // qkv_scale_out
        nullptr,  // attention_out_scale
        0,        // int8_mode
        stream_);
    sync_check_cuda_error();

    linear_.forward(hidden_features_data, context_buf_, batch_size, weights->output);

    if (tensor_para_.world_size_ > 1) {
        NcclGuard nccl_guard(tensor_para_, stream_);
        ftNcclAllReduceSum(
            hidden_features_data, hidden_features_data, batch_size * hidden_units_, tensor_para_, stream_);
        sync_check_cuda_error();
    }

    if (is_free_buffer_after_forward_) {
        freeBuffer();
    }

    // LOG(WARNING);
}

template class LlamaDecoderSelfAttentionLayer<float>;
template class LlamaDecoderSelfAttentionLayer<half>;

}  // namespace fastertransformer