gemm_func.cc 47.6 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "encoder_gemm_func.h"
#include <assert.h>
#include <sys/types.h>
Chen Xin's avatar
Chen Xin committed
20
#include <vector>
Li Zhang's avatar
Li Zhang committed
21
22
23
24
25

#ifndef CUDART_VERSION
#error CUDART_VERSION Undefined!
#endif

lvhan028's avatar
lvhan028 committed
26
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

// Utility function to print customMatmulPerf_t structure
int printPerfStructure(int                       batch_size,
                       int                       seq_len,
                       int                       head_num,
                       int                       size_per_head,
                       int                       m,
                       int                       n,
                       int                       k,
                       const customMatmulPerf_t& perf,
                       FILE*                     fout,
                       CublasDataType            data_type,
                       int                       hasPrint,
                       int                       batch_count)
{
    int algoId, tile, swizzle, customOption, numSplitsK, reductionScheme, stages;

    const cublasLtMatmulAlgo_t* matmulAlgo = &perf.algo;
    cublasLtMatmulAlgoConfigGetAttribute(matmulAlgo, CUBLASLT_ALGO_CONFIG_ID, &algoId, sizeof(algoId), NULL);
    cublasLtMatmulAlgoConfigGetAttribute(matmulAlgo, CUBLASLT_ALGO_CONFIG_TILE_ID, &tile, sizeof(tile), NULL);
    cublasLtMatmulAlgoConfigGetAttribute(
        matmulAlgo, CUBLASLT_ALGO_CONFIG_SPLITK_NUM, &numSplitsK, sizeof(numSplitsK), NULL);
    cublasLtMatmulAlgoConfigGetAttribute(
        matmulAlgo, CUBLASLT_ALGO_CONFIG_REDUCTION_SCHEME, &reductionScheme, sizeof(reductionScheme), NULL);
    cublasLtMatmulAlgoConfigGetAttribute(
        matmulAlgo, CUBLASLT_ALGO_CONFIG_CTA_SWIZZLING, &swizzle, sizeof(swizzle), NULL);
    cublasLtMatmulAlgoConfigGetAttribute(
        matmulAlgo, CUBLASLT_ALGO_CONFIG_CUSTOM_OPTION, &customOption, sizeof(customOption), NULL);
zhouxiang's avatar
zhouxiang committed
55
56
57
// #if (CUDART_VERSION >= 11000)
//     cublasLtMatmulAlgoConfigGetAttribute(matmulAlgo, CUBLASLT_ALGO_CONFIG_STAGES_ID, &stages, sizeof(stages), NULL);
// #else
Li Zhang's avatar
Li Zhang committed
58
    stages = 0;
zhouxiang's avatar
zhouxiang committed
59
// #endif
Li Zhang's avatar
Li Zhang committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#if (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH >= 3)
    uint16_t inner_shapeId, cluster_shapeId;
    cublasLtMatmulAlgoConfigGetAttribute(
        matmulAlgo, CUBLASLT_ALGO_CONFIG_INNER_SHAPE_ID, &inner_shapeId, sizeof(inner_shapeId), NULL);
    cublasLtMatmulAlgoConfigGetAttribute(
        matmulAlgo, CUBLASLT_ALGO_CONFIG_CLUSTER_SHAPE_ID, &cluster_shapeId, sizeof(cluster_shapeId), NULL);
#elif (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH < 3)
    uint16_t mma_shapeId, cga_shapeId, sche_mode;
    cublasLtMatmulAlgoConfigGetAttribute(
        matmulAlgo, CUBLASLT_ALGO_CONFIG_MMA_SHAPE_ID, &mma_shapeId, sizeof(mma_shapeId), NULL);
    cublasLtMatmulAlgoConfigGetAttribute(
        matmulAlgo, CUBLASLT_ALGO_CONFIG_CGA_SHAPE_ID, &cga_shapeId, sizeof(cga_shapeId), NULL);
    cublasLtMatmulAlgoConfigGetAttribute(
        matmulAlgo, CUBLASLT_ALGO_CONFIG_SCHEDULING_MODE, &sche_mode, sizeof(sche_mode), NULL);
#endif

    printf("algo={ Id=%d, tileIdx=%d (%s) splitK=%d reduc=%d swizzle=%d custom=%d "
zhouxiang's avatar
zhouxiang committed
77
78
79
// #if (CUDART_VERSION >= 11000)
//            "stages=%d "
// #endif
Li Zhang's avatar
Li Zhang committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#if (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH >= 3)
           "inner_shapeId=%d cluster_shapeId=%d"
#elif (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH < 3)
           "mma_shapeId=%d cga_shapeId=%d schedule_mode=%d"
#endif
           "} status %d "
           "time %fms workspace=%d mathMode=%d waves=%f\n",
           algoId,
           tile,
           matmulTileName[tile],
           numSplitsK,
           reductionScheme,
           swizzle,
           customOption,
zhouxiang's avatar
zhouxiang committed
94
95
96
// #if (CUDART_VERSION >= 11000)
//            stages,
// #endif
Li Zhang's avatar
Li Zhang committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
#if (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH >= 3)
           inner_shapeId,
           cluster_shapeId,
#elif (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH < 3)
           mma_shapeId,
           cga_shapeId,
           sche_mode,
#endif
           perf.status,
           perf.time,
           (int)perf.workspaceSize,
           (int)perf.mathMode,
           perf.wavesCount);
    if (hasPrint == 0) {
        fprintf(fout,
                "%d %d %d %d %d ### %d %d %d %d %d %d %d %d %d %d %d %d "
#if (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH >= 3)
                "%d %d "
#elif (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH < 3)
                "%d %d %d "
#endif
                "%f\n",
                batch_size,
                seq_len,
                head_num,
                size_per_head,
                data_type,
                batch_count,
                m,
                n,
                k,
                algoId,
                customOption,
                tile,
                numSplitsK,
                swizzle,
                reductionScheme,
                (int)perf.workspaceSize,
                stages,
#if (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH >= 3)
                inner_shapeId,
                cluster_shapeId,
#elif (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH < 3)
                mma_shapeId,
                cga_shapeId,
                sche_mode,
#endif
                perf.time);
        return 1;
    }
    else {
        return hasPrint;
    }
}

static inline bool time_compare(const customMatmulPerf_t& perf_a, const customMatmulPerf_t& perf_b)
{
    return ((perf_a.status == CUBLAS_STATUS_SUCCESS) && (perf_a.time < perf_b.time));
}

zhouxiang's avatar
zhouxiang committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
// static cublasStatus_t customMatmulRun(cublasLtHandle_t            ltHandle,  // to get the capabilities (required a GPU)
//                                       cublasLtMatmulDesc_t        operationDesc,
//                                       const void*                 alpha, /* host or device pointer */
//                                       const void*                 A,
//                                       cublasLtMatrixLayout_t      Adesc,
//                                       const void*                 B,
//                                       cublasLtMatrixLayout_t      Bdesc,
//                                       const void*                 beta, /* host or device pointer */
//                                       const void*                 C,
//                                       cublasLtMatrixLayout_t      Cdesc,
//                                       void*                       D,
//                                       cublasLtMatrixLayout_t      Ddesc,
//                                       const cublasLtMatmulAlgo_t& algo,
//                                       int                         kernelRepeats,
//                                       void*                       workSpace,
//                                       size_t                      workSpaceSizeInBytes,
//                                       customMatmulPerf_t&         perfResults,
//                                       cudaStream_t                stream,
//                                       cudaEvent_t&                startEvent,
//                                       cudaEvent_t&                stopEvent)
// {
//     cublasLtMatmulHeuristicResult_t heurResult;
//     /* Looping over the Algo */
//     int            repeats = kernelRepeats;
//     cublasStatus_t algoStatus =
//         cublasLtMatmulAlgoCheck(ltHandle, operationDesc, Adesc, Bdesc, Cdesc, Ddesc, &algo, &heurResult);

//     if (algoStatus == CUBLAS_STATUS_SUCCESS) {
//         if (heurResult.workspaceSize <= workSpaceSizeInBytes) {
//             cudaError_t err, err1, err2, err3;
//             err = cudaEventRecord(startEvent, stream);
//             for (int loop = 0; loop < repeats; loop++) {
//                 cublasStatus_t oneRunStatus = cublasLtMatmul(ltHandle,
//                                                              operationDesc,
//                                                              alpha,
//                                                              A,
//                                                              Adesc,
//                                                              B,
//                                                              Bdesc,
//                                                              beta,
//                                                              C,
//                                                              Cdesc,
//                                                              D,
//                                                              Ddesc,
//                                                              &algo,
//                                                              workSpace,
//                                                              workSpaceSizeInBytes,
//                                                              stream);
//                 if (oneRunStatus != CUBLAS_STATUS_SUCCESS) {
//                     algoStatus = oneRunStatus;
//                     break;
//                 }
//             }
//             err1 = cudaEventRecord(stopEvent, stream);
//             err2 = cudaEventSynchronize(stopEvent);
//             float time;
//             err3 = cudaEventElapsedTime(&time, startEvent, stopEvent);
//             if ((err != cudaSuccess) || (err1 != cudaSuccess) || (err2 != cudaSuccess) || (err3 != cudaSuccess)) {
//                 algoStatus = CUBLAS_STATUS_INTERNAL_ERROR;
//             }
//             // For the moment only add successful findings
//             if (algoStatus == CUBLAS_STATUS_SUCCESS) {
//                 perfResults.algo          = algo;
//                 perfResults.time          = time / repeats;
//                 perfResults.workspaceSize = heurResult.workspaceSize;
//                 perfResults.wavesCount    = heurResult.wavesCount;
//             }
//         }
//         else {
//             // printf("not enough workspace! %ld\n", heurResult.workspaceSize);
//             algoStatus = CUBLAS_STATUS_NOT_SUPPORTED;  // Not enough workspace
//         }
//     }

//     return algoStatus;
// }

// template<typename T, typename scaleT>
// int LtHgemmCustomFind(cublasLtHandle_t   ltHandle,
//                       int                batch_size,
//                       int                seq_len,
//                       int                head_num,
//                       int                size_per_head,
//                       int                m,
//                       int                n,
//                       int                k,
//                       const scaleT*      alpha, /* host pointer */
//                       const T*           A,
//                       const T*           B,
//                       const scaleT*      beta, /* host pointer */
//                       T*                 C,
//                       void*              workSpace,
//                       size_t             workSpaceSize,
//                       FILE*              fout,
//                       customMatmulPerf_t perfResults[],
//                       int                AlgoCombinations,
//                       cudaDataType_t     dtype_fp8,
//                       int                batchCount,
//                       int64_t            strideA,
//                       int64_t            strideB,
//                       int64_t            strideD)
// {
//     cublasStatus_t status = CUBLAS_STATUS_SUCCESS;
//     cudaEvent_t    startEvent;
//     cudaEvent_t    stopEvent;
//     CublasDataType data_type;

//     cublasLtMatmulDesc_t   operationDesc = NULL;
//     cublasLtMatrixLayout_t Adesc = NULL, Bdesc = NULL, Cdesc = NULL, Ddesc = NULL;

//     cudaStream_t stream = 0;
//     // SplitK value that we are going to try when SplitK is supported for a
//     // given algo
//     const int splitKSequenceA[] = {2, 3, 4, 5, 6, 8, 12, 16, 32};
//     // Let try a fixed number of combinations
//     int                               AlgoCount         = 0;
//     int                               AlgoCountRestrict = 0;            // workspace == 0
//     const int                         maxNumTraversal   = 50;           // max number of traversal
//     std::vector<cublasLtMatmulAlgo_t> algos(AlgoCombinations);          // 0 <= workspace <= 32MB
//     std::vector<cublasLtMatmulAlgo_t> algosRestrict(AlgoCombinations);  // workspace == 0
//     const int                         kernelRepeats = 100;  // number of time the CUDA kernels will be run back to back
//     int                               nbAlgoIds     = 0;    // Number of algorithms actually returned by
//                                                             // cublasLtMatmulAlgoGetIds function.
// #define ALGO_IDS 100                                        // Number of algorithms requested.
//     int algoIdA[ALGO_IDS];                                  // Array containing the algorithm IDs returned by
//                                                             // cublasLtMatmulAlgoGetIds function.
//     cudaDataType_t Atype, Btype, Ctype, scaleType, Dtype;
// // #if (CUDART_VERSION >= 11000)
// //     cublasComputeType_t computeType;
// // #else
//     cudaDataType_t computeType;
// // #endif

//     if (std::is_same<T, float>::value) {
//         data_type = FLOAT_DATATYPE;
//         Atype = CUDA_R_32F, Btype = CUDA_R_32F, Ctype = CUDA_R_32F, Dtype = CUDA_R_32F;
//     }
//     else if (std::is_same<T, half>::value) {
//         data_type = HALF_DATATYPE;
//         Atype = CUDA_R_16F, Btype = CUDA_R_16F, Ctype = CUDA_R_16F, Dtype = CUDA_R_16F;
//     }
// #ifdef ENABLE_BF16
//     else if (std::is_same<T, __nv_bfloat16>::value) {
//         data_type = BFLOAT16_DATATYPE;
//         Atype = CUDA_R_16BF, Btype = CUDA_R_16BF, Ctype = CUDA_R_16BF, Dtype = CUDA_R_16BF;
//     }
// #endif
// #ifdef ENABLE_FP8
//     else if (std::is_same<T, __nv_fp8_e4m3>::value) {
//         data_type = FP8_DATATYPE;
//         Atype = CUDA_R_8F_E4M3, Btype = CUDA_R_8F_E4M3, Ctype = CUDA_R_16BF;
// #ifdef FP8_GEMM_OUTPUT_QUANT_DISABLE
//         Dtype = CUDA_R_16BF;
// #else
//         Dtype = dtype_fp8;
// #endif
//     }
// #endif

//     if (sizeof(scaleT) == sizeof(float)) {
//         scaleType = CUDA_R_32F;
// // #if (CUDART_VERSION >= 11000)
// //         computeType = CUBLAS_COMPUTE_32F;
// // #else
//         computeType = CUDA_R_32F;
// // #endif
//     }
//     else {
//         scaleType = CUDA_R_16F;
// // #if (CUDART_VERSION >= 11000)
// //         computeType = CUBLAS_COMPUTE_16F;
// // #else
//         computeType = CUDA_R_16F;
// // #endif
//     }

//     const cublasOperation_t tA = data_type == FP8_DATATYPE ? CUBLAS_OP_T : CUBLAS_OP_N;

// // Create operation descriptor; see cublasLtMatmulDescAttributes_t for
// // details about defaults; here we just need to set the transforms for A and
// // B
// // #if (CUDART_VERSION >= 11000)
// //     status = cublasLtMatmulDescCreate(&operationDesc, computeType,
// //                                       scaleType);  //  creates a matrix multiply descriptor
// // #else
//     status = cublasLtMatmulDescCreate(&operationDesc, computeType);
// // #endif
//     if (status != CUBLAS_STATUS_SUCCESS) {
//         goto CLEANUP;
//     }

//     status = cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_TRANSA, &tA, sizeof(tA));
//     if (status != CUBLAS_STATUS_SUCCESS) {
//         goto CLEANUP;
//     }
// #ifdef ENABLE_FP8
//     if (data_type == FP8_DATATYPE) {
//         const int8_t fastAccuMode = 1;  // enable fast imprecise accum
//         status                    = cublasLtMatmulDescSetAttribute(
//             operationDesc, CUBLASLT_MATMUL_DESC_FAST_ACCUM, &fastAccuMode, sizeof(decltype(fastAccuMode)));
//         if (status != CUBLAS_STATUS_SUCCESS) {
//             goto CLEANUP;
//         }
//     }
// #endif

//     // Create matrix descriptors. We are good with the details here so no need
//     // to set any extra attributes
//     if (data_type == FP8_DATATYPE) {
//         status = cublasLtMatrixLayoutCreate(&Adesc, Atype, k, m, k);
//     }
//     else {
//         status = cublasLtMatrixLayoutCreate(&Adesc, Atype, m, k, m);
//     }
//     if (status != CUBLAS_STATUS_SUCCESS) {
//         goto CLEANUP;
//     }

//     status = cublasLtMatrixLayoutCreate(&Bdesc, Btype, k, n, k);
//     if (status != CUBLAS_STATUS_SUCCESS) {
//         goto CLEANUP;
//     }

//     status = cublasLtMatrixLayoutCreate(&Cdesc, Ctype, m, n, m);
//     if (status != CUBLAS_STATUS_SUCCESS) {
//         goto CLEANUP;
//     }
//     status = cublasLtMatrixLayoutCreate(&Ddesc, Dtype, m, n, m);
//     if (status != CUBLAS_STATUS_SUCCESS) {
//         goto CLEANUP;
//     }

//     if (batchCount > 1) {
//         check_cuda_error(cublasLtMatrixLayoutSetAttribute(
//             Adesc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batchCount, sizeof(batchCount)));
//         check_cuda_error(cublasLtMatrixLayoutSetAttribute(
//             Bdesc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batchCount, sizeof(batchCount)));
//         check_cuda_error(cublasLtMatrixLayoutSetAttribute(
//             Cdesc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batchCount, sizeof(batchCount)));
//         check_cuda_error(cublasLtMatrixLayoutSetAttribute(
//             Ddesc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batchCount, sizeof(batchCount)));

//         check_cuda_error(cublasLtMatrixLayoutSetAttribute(
//             Adesc, CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, &strideA, sizeof(strideA)));
//         check_cuda_error(cublasLtMatrixLayoutSetAttribute(
//             Bdesc, CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, &strideB, sizeof(strideB)));
//         check_cuda_error(cublasLtMatrixLayoutSetAttribute(
//             Cdesc, CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, &strideD, sizeof(strideD)));
//         check_cuda_error(cublasLtMatrixLayoutSetAttribute(
//             Ddesc, CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET, &strideD, sizeof(strideD)));
//     }

//     // Create CUDA event to time the execution time of each algo
//     if (cudaEventCreate(&startEvent, cudaEventBlockingSync) != cudaSuccess) {
//         goto CLEANUP;
//     }
//     if (cudaEventCreate(&stopEvent, cudaEventBlockingSync) != cudaSuccess) {
//         goto CLEANUP;
//     }

//     // Request the 100 first AlgoId available
//     status = cublasLtMatmulAlgoGetIds(
//         ltHandle, computeType, scaleType, Atype, Btype, Ctype, Dtype, ALGO_IDS, algoIdA, &nbAlgoIds);
//     if (status != CUBLAS_STATUS_SUCCESS) {
//         goto CLEANUP;
//     }
//     if (nbAlgoIds > ALGO_IDS) {
//         printf(
//             "Warning: the algo id count is not large enough to guarantee the best algo %d, %d\n", nbAlgoIds, ALGO_IDS);
//     }

//     // Loop over the Algo IDs
//     // This loop doesn't work for fp8 gemm
//     for (int idx = 0; (idx < nbAlgoIds) && (AlgoCount < AlgoCombinations); idx++) {
//         cublasLtMatmulAlgo_t algo;
//         size_t               sizeWritten = 0;
//         /* Initialize algo structure with given Algp ID */
//         status =
//             cublasLtMatmulAlgoInit(ltHandle, computeType, scaleType, Atype, Btype, Ctype, Dtype, algoIdA[idx], &algo);
//         if (status != CUBLAS_STATUS_SUCCESS) {
//             continue;
//         }
//         // Query the tiles enums supported by that algo
//         cublasLtMatmulAlgoCapGetAttribute(&algo, CUBLASLT_ALGO_CAP_TILE_IDS, NULL, 0, &sizeWritten);
//         int  nbTiles = int(sizeWritten / sizeof(int));
//         int* tileA   = new int[nbTiles == 0 ? 1 : nbTiles];
//         if (nbTiles == 0) {
//             tileA[0] = CUBLASLT_MATMUL_TILE_UNDEFINED;
//             nbTiles  = 1;
//         }
// // #if (CUDART_VERSION >= 11000)
// //         cublasLtMatmulAlgoCapGetAttribute(&algo, CUBLASLT_ALGO_CAP_STAGES_IDS, NULL, 0, &sizeWritten);
// //         int              nbStages = int(sizeWritten / sizeof(int));
// //         std::vector<int> stagesA(nbStages == 0 ? 1 : nbStages);
// //         if (nbStages == 0) {
// //             stagesA[0] = CUBLASLT_MATMUL_STAGES_UNDEFINED;
// //             nbStages   = 1;
// //         }
// //         else {
// //             cublasLtMatmulAlgoCapGetAttribute(
// //                 &algo, CUBLASLT_ALGO_CAP_STAGES_IDS, stagesA.data(), sizeof(int) * nbStages, &sizeWritten);
// //         }
// // #endif
//         int splitkSupport, redMask, swizzlingMax, customOptionMax;
//         // Retrieve Algo Capabilities attributes to be able to setup loop over
//         // the different combinations
//         cublasLtMatmulAlgoCapGetAttribute(
//             &algo, CUBLASLT_ALGO_CAP_TILE_IDS, tileA, sizeof(int) * nbTiles, &sizeWritten);
//         cublasLtMatmulAlgoCapGetAttribute(
//             &algo, CUBLASLT_ALGO_CAP_SPLITK_SUPPORT, &splitkSupport, sizeof(splitkSupport), &sizeWritten);
//         cublasLtMatmulAlgoCapGetAttribute(
//             &algo, CUBLASLT_ALGO_CAP_REDUCTION_SCHEME_MASK, &redMask, sizeof(redMask), &sizeWritten);
//         cublasLtMatmulAlgoCapGetAttribute(
//             &algo, CUBLASLT_ALGO_CAP_CTA_SWIZZLING_SUPPORT, &swizzlingMax, sizeof(swizzlingMax), &sizeWritten);
//         cublasLtMatmulAlgoCapGetAttribute(
//             &algo, CUBLASLT_ALGO_CAP_CUSTOM_OPTION_MAX, &customOptionMax, sizeof(customOptionMax), &sizeWritten);

//         /* Loop over the different tiles */
//         for (int tileIdx = 0; tileIdx < nbTiles; tileIdx++) {
// // #if (CUDART_VERSION >= 11000)make:q
// //             /* Loop over different stages count */
// //             for (int stagesIdx = 0; stagesIdx < nbStages; stagesIdx++) {
// //                 cublasLtMatmulAlgoConfigSetAttribute(
// //                     &algo, CUBLASLT_ALGO_CONFIG_STAGES_ID, &stagesA[stagesIdx], sizeof(stagesA[stagesIdx]));
// // #endif
//                 /* Loop over the different custom option if any */
//                 for (int customOption = 0; customOption <= customOptionMax; customOption++) {
//                     cublasLtMatmulAlgoConfigSetAttribute(
//                         &algo, CUBLASLT_ALGO_CONFIG_CUSTOM_OPTION, &customOption, sizeof(customOption));
//                     /* Loop over the CTAs swizzling support */
//                     for (int k = 0; k <= swizzlingMax; k++) {
//                         int splitK_trial = 0;
//                         if (splitkSupport) {
//                             splitK_trial += sizeof(splitKSequenceA) / sizeof(splitKSequenceA[0]);
//                         }
//                         // Loop over the splitK value over a fixed sequence
//                         // splitKSequenceA in addition to the case where splitK
//                         // is not enabled
//                         for (int l = 0; (l < (1 + splitK_trial)) && (AlgoCount < AlgoCombinations); l++) {
//                             /* Setup attribute of the algo to run */
//                             cublasLtMatmulAlgoConfigSetAttribute(
//                                 &algo, CUBLASLT_ALGO_CONFIG_TILE_ID, &tileA[tileIdx], sizeof(tileA[tileIdx]));
//                             int splitK_val = 0;
//                             int redScheme  = CUBLASLT_REDUCTION_SCHEME_NONE;
//                             cublasLtMatmulAlgoConfigSetAttribute(
//                                 &algo, CUBLASLT_ALGO_CONFIG_SPLITK_NUM, &splitK_val, sizeof(splitK_val));
//                             cublasLtMatmulAlgoConfigSetAttribute(
//                                 &algo, CUBLASLT_ALGO_CONFIG_CTA_SWIZZLING, &k, sizeof(k));
//                             cublasLtMatmulAlgoConfigSetAttribute(
//                                 &algo, CUBLASLT_ALGO_CONFIG_REDUCTION_SCHEME, &redScheme, sizeof(int));

//                             if (l > 0) {  // Split-K case
//                                 splitK_val = splitKSequenceA[l - 1];
//                                 cublasLtMatmulAlgoConfigSetAttribute(&algo,
//                                                                      CUBLASLT_ALGO_CONFIG_SPLITK_NUM,
//                                                                      &splitKSequenceA[l - 1],
//                                                                      sizeof(splitKSequenceA[l - 1]));
//                                 /* Going over all the reduction scheme  */
//                                 for (redScheme = 1;
//                                      redScheme < (int)CUBLASLT_REDUCTION_SCHEME_MASK && (AlgoCount < AlgoCombinations);
//                                      redScheme = redScheme << 1) {
//                                     if (redScheme & redMask) {
//                                         cublasLtMatmulAlgoConfigSetAttribute(&algo,
//                                                                              CUBLASLT_ALGO_CONFIG_REDUCTION_SCHEME,
//                                                                              &redScheme,
//                                                                              sizeof(redScheme));

//                                         cublasLtMatmulHeuristicResult_t heurResult;
//                                         cublasStatus_t                  algoStatus = cublasLtMatmulAlgoCheck(
//                                             ltHandle, operationDesc, Adesc, Bdesc, Cdesc, Cdesc, &algo, &heurResult);
//                                         if (heurResult.workspaceSize > workSpaceSize) {
//                                             // printf("not enough workspace!
//                                             // %ld\n",
//                                             // heurResult.workspaceSize);
//                                             algoStatus = CUBLAS_STATUS_NOT_SUPPORTED;  // Not enough workspace
//                                         }
//                                         else if (heurResult.workspaceSize == 0) {
//                                             if (algoStatus == CUBLAS_STATUS_SUCCESS) {
//                                                 algosRestrict[AlgoCountRestrict++] = algo;
//                                             }
//                                         }
//                                         if (algoStatus == CUBLAS_STATUS_SUCCESS) {
//                                             algos[AlgoCount++] = algo;
//                                         }
//                                     }  // end if
//                                 }      // end for
//                             }
//                             else {  // Non-splitK case
//                                 /* if user preference is ok with workspace */
//                                 if (AlgoCount < AlgoCombinations) {
//                                     cublasLtMatmulHeuristicResult_t heurResult;
//                                     cublasStatus_t                  algoStatus = cublasLtMatmulAlgoCheck(
//                                         ltHandle, operationDesc, Adesc, Bdesc, Cdesc, Cdesc, &algo, &heurResult);
//                                     if (heurResult.workspaceSize > workSpaceSize) {
//                                         // printf("not enough workspace! %ld\n",
//                                         // heurResult.workspaceSize);
//                                         algoStatus = CUBLAS_STATUS_NOT_SUPPORTED;  // Not
//                                                                                    // enough
//                                                                                    // workspace
//                                     }
//                                     else if (heurResult.workspaceSize == 0) {
//                                         if (algoStatus == CUBLAS_STATUS_SUCCESS) {
//                                             algosRestrict[AlgoCountRestrict++] = algo;
//                                         }
//                                     }
//                                     if (algoStatus == CUBLAS_STATUS_SUCCESS) {
//                                         algos[AlgoCount++] = algo;
//                                     }
//                                 }
//                             }
//                         }  // end l
//                     }      // end k
//                 }          // end customOption
// // #if (CUDART_VERSION >= 11000)
//             }  // end stagesIdx
// // #endif
//         }  // end tileIdx
//         delete[] tileA;
//     }  // end idx

//     printf("AlgoCount: %d\n", AlgoCount);
//     if (data_type == FP8_DATATYPE) {
//         assert(AlgoCount == 0);
//     }
//     if (AlgoCount < maxNumTraversal && data_type != FP8_DATATYPE) {
//         // 0 <= workspacesize <= 32MB
//         for (int i = 0; i < AlgoCount; i++) {
//             status                = customMatmulRun(ltHandle,
//                                      operationDesc,
//                                      alpha, /* host or device pointer */
//                                      A,
//                                      Adesc,
//                                      B,
//                                      Bdesc,
//                                      beta, /* host or device pointer */
//                                      C,
//                                      Cdesc,
//                                      C,
//                                      Cdesc,
//                                      algos[i],
//                                      kernelRepeats,
//                                      workSpace,
//                                      workSpaceSize,
//                                      perfResults[i],
//                                      stream,
//                                      startEvent,
//                                      stopEvent);
//             perfResults[i].status = status;
//             // if (status == CUBLAS_STATUS_SUCCESS) AlgoCount++;
//         }
//     }
//     else {
//         // Heuristic + workspacesize==0
//         AlgoCount = 0;
//         nbAlgoIds = 0;
//         cublasLtMatmulPreference_t pref;
//         cublasLtMatmulPreferenceCreate(&pref);
//         uint64_t maxWorkSpaceSize = workSpaceSize;  //(32MB)
//         cublasLtMatmulPreferenceSetAttribute(
//             pref, CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES, &maxWorkSpaceSize, sizeof(maxWorkSpaceSize));
//         cublasLtMatmulHeuristicResult_t heuristicResultsArray[maxNumTraversal];

//         cublasLtMatmulAlgoGetHeuristic(ltHandle,
//                                        operationDesc,
//                                        Adesc,
//                                        Bdesc,
//                                        Cdesc,
//                                        Ddesc,
//                                        pref,
//                                        maxNumTraversal,
//                                        heuristicResultsArray,
//                                        &nbAlgoIds);
//         cublasLtMatmulPreferenceDestroy(pref);
//         printf("return %d and run heuristic algo\n", nbAlgoIds);
//         for (int i = 0; i < nbAlgoIds; i++) {
//             if (heuristicResultsArray[i].state == CUBLAS_STATUS_SUCCESS) {
//                 status                        = customMatmulRun(ltHandle,
//                                          operationDesc,
//                                          alpha, /* host or device pointer */
//                                          A,
//                                          Adesc,
//                                          B,
//                                          Bdesc,
//                                          beta, /* host or device pointer */
//                                          C,
//                                          Cdesc,
//                                          C,
//                                          Ddesc,
//                                          heuristicResultsArray[i].algo,
//                                          kernelRepeats,
//                                          workSpace,
//                                          workSpaceSize,
//                                          perfResults[AlgoCount],
//                                          stream,
//                                          startEvent,
//                                          stopEvent);
//                 perfResults[AlgoCount].status = status;
//                 if (status == CUBLAS_STATUS_SUCCESS) {
//                     AlgoCount++;
//                 }
//             }
//         }

//         // workspacesize==0
//         printf("workspacesize==0, run %d algos\n", AlgoCountRestrict);
//         for (int i = 0; i < AlgoCountRestrict && i < (maxNumTraversal - nbAlgoIds); i++) {
//             status                        = customMatmulRun(ltHandle,
//                                      operationDesc,
//                                      alpha, /* host or device pointer */
//                                      A,
//                                      Adesc,
//                                      B,
//                                      Bdesc,
//                                      beta, /* host or device pointer */
//                                      C,
//                                      Cdesc,
//                                      C,
//                                      Ddesc,
//                                      algosRestrict[i],
//                                      kernelRepeats,
//                                      NULL,
//                                      0,
//                                      perfResults[AlgoCount],
//                                      stream,
//                                      startEvent,
//                                      stopEvent);
//             perfResults[AlgoCount].status = status;
//             if (status == CUBLAS_STATUS_SUCCESS) {
//                 AlgoCount++;
//             }
//         }
//     }

//     // Sort the results per run duration
//     std::sort(perfResults, perfResults + AlgoCount, time_compare);
//     // Print timing and perf details
//     for (int i = 0, hasPrint = 1; i < AlgoCount; i++) {
//         printf("result %03d : ", i);
//         hasPrint = printPerfStructure(batch_size,
//                                       seq_len,
//                                       head_num,
//                                       size_per_head,
//                                       m,
//                                       n,
//                                       k,
//                                       perfResults[i],
//                                       fout,
//                                       data_type,
//                                       hasPrint,
//                                       batchCount);
//     }

// CLEANUP:
//     // Descriptors are no longer needed as all GPU work was already enqueued
//     if (Cdesc) {
//         cublasLtMatrixLayoutDestroy(Cdesc);
//     }
//     if (Bdesc) {
//         cublasLtMatrixLayoutDestroy(Bdesc);
//     }
//     if (Adesc) {
//         cublasLtMatrixLayoutDestroy(Adesc);
//     }
//     if (operationDesc) {
//         cublasLtMatmulDescDestroy(operationDesc);
//     }
//     if (startEvent) {
//         cudaEventDestroy(startEvent);
//     }
//     if (stopEvent) {
//         cudaEventDestroy(stopEvent);
//     }
//     return status == CUBLAS_STATUS_SUCCESS ? 0 : 1;
// }

// template int LtHgemmCustomFind(cublasLtHandle_t   ltHandle,
//                                int                batch_size,
//                                int                seq_len,
//                                int                head_num,
//                                int                size_per_head,
//                                int                m,
//                                int                n,
//                                int                k,
//                                const float*       alpha, /* host pointer */
//                                const float*       A,
//                                const float*       B,
//                                const float*       beta, /* host pointer */
//                                float*             C,
//                                void*              workSpace,
//                                size_t             workSpaceSize,
//                                FILE*              fout,
//                                customMatmulPerf_t perfResults[],
//                                int                AlgoCombinations,
//                                cudaDataType_t     dtype_fp8,
//                                int                batchCount,
//                                int64_t            strideA,
//                                int64_t            strideB,
//                                int64_t            strideD);

// template int LtHgemmCustomFind(cublasLtHandle_t   ltHandle,
//                                int                batch_size,
//                                int                seq_len,
//                                int                head_num,
//                                int                size_per_head,
//                                int                m,
//                                int                n,
//                                int                k,
//                                const half*        alpha, /* host pointer */
//                                const half*        A,
//                                const half*        B,
//                                const half*        beta, /* host pointer */
//                                half*              C,
//                                void*              workSpace,
//                                size_t             workSpaceSize,
//                                FILE*              fout,
//                                customMatmulPerf_t perfResults[],
//                                int                AlgoCombinations,
//                                cudaDataType_t     dtype_fp8,
//                                int                batchCount,
//                                int64_t            strideA,
//                                int64_t            strideB,
//                                int64_t            strideD);

// #ifdef ENABLE_BF16
// template int LtHgemmCustomFind(cublasLtHandle_t     ltHandle,
//                                int                  batch_size,
//                                int                  seq_len,
//                                int                  head_num,
//                                int                  size_per_head,
//                                int                  m,
//                                int                  n,
//                                int                  k,
//                                const float*         alpha, /* host pointer */
//                                const __nv_bfloat16* A,
//                                const __nv_bfloat16* B,
//                                const float*         beta, /* host pointer */
//                                __nv_bfloat16*       C,
//                                void*                workSpace,
//                                size_t               workSpaceSize,
//                                FILE*                fout,
//                                customMatmulPerf_t   perfResults[],
//                                int                  AlgoCombinations,
//                                cudaDataType_t       dtype_fp8,
//                                int                  batchCount,
//                                int64_t              strideA,
//                                int64_t              strideB,
//                                int64_t              strideD);
// #endif

// #ifdef ENABLE_FP8
// template int LtHgemmCustomFind(cublasLtHandle_t     ltHandle,
//                                int                  batch_size,
//                                int                  seq_len,
//                                int                  head_num,
//                                int                  size_per_head,
//                                int                  m,
//                                int                  n,
//                                int                  k,
//                                const float*         alpha, /* host pointer */
//                                const __nv_fp8_e4m3* A,
//                                const __nv_fp8_e4m3* B,
//                                const float*         beta, /* host pointer */
//                                __nv_fp8_e4m3*       C,
//                                void*                workSpace,
//                                size_t               workSpaceSize,
//                                FILE*                fout,
//                                customMatmulPerf_t   perfResults[],
//                                int                  AlgoCombinations,
//                                cudaDataType_t       dtype_fp8,
//                                int                  batchCount,
//                                int64_t              strideA,
//                                int64_t              strideB,
//                                int64_t              strideD);
// #endif

// template int LtHgemmCustomFind(cublasLtHandle_t   ltHandle,
//                                int                batch_size,
//                                int                seq_len,
//                                int                head_num,
//                                int                size_per_head,
//                                int                m,
//                                int                n,
//                                int                k,
//                                const float*       alpha, /* host pointer */
//                                const half*        A,
//                                const half*        B,
//                                const float*       beta, /* host pointer */
//                                half*              C,
//                                void*              workSpace,
//                                size_t             workSpaceSize,
//                                FILE*              fout,
//                                customMatmulPerf_t perfResults[],
//                                int                AlgoCombinations,
//                                cudaDataType_t     dtype_fp8,
//                                int                batchCount,
//                                int64_t            strideA,
//                                int64_t            strideB,
//                                int64_t            strideD);
Li Zhang's avatar
Li Zhang committed
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

size_t calGemmTestBufSizeInByte(int            batch_size,
                                int            seq_len,
                                int            head_num,
                                int            size_per_head,
                                int            inter_size,
                                int            vocab_size,
                                int            int8_mode,
                                CublasDataType data_type)
{
    size_t buf_size_in_byte;
    if (int8_mode > 0) {
        int m = batch_size * seq_len;
        int n = head_num * size_per_head;
        int k = n;

        size_t size1 = 3 * (m * k * sizeof(int8_t) + k * n * sizeof(int8_t) + m * n * sizeof(int));
        size_t size2 = batch_size * head_num
                       * (seq_len * size_per_head * sizeof(int8_t) + size_per_head * seq_len * sizeof(int8_t)
                          + seq_len * seq_len * sizeof(int));
        size_t size3 = batch_size * head_num
                       * (seq_len * seq_len * sizeof(int8_t) + seq_len * size_per_head * sizeof(int8_t)
                          + seq_len * size_per_head * sizeof(int));
        size_t size4     = m * k * sizeof(int8_t) + k * inter_size * sizeof(int8_t) + m * inter_size * sizeof(int);
        size_t size5     = m * k * sizeof(int8_t) + k * vocab_size * sizeof(int8_t) + m * vocab_size * sizeof(int);
        buf_size_in_byte = size1 > size2 ? size1 : size2;
        buf_size_in_byte = buf_size_in_byte > size3 ? buf_size_in_byte : size3;
        buf_size_in_byte = buf_size_in_byte > size4 ? buf_size_in_byte : size4;
        buf_size_in_byte = buf_size_in_byte > size5 ? buf_size_in_byte : size5;
    }
    else {
        size_t m = batch_size * seq_len;
        size_t n = head_num * size_per_head;
        size_t k = n;
        // TODO need to add bfloat16 here
        int    wordSize = (data_type == FLOAT_DATATYPE ? sizeof(float) : sizeof(half));
        size_t size1    = 3 * (m * k + k * n + m * n) * wordSize;
        size_t size2    = (size_t)batch_size * (size_t)head_num
                       * ((size_t)seq_len * (size_t)seq_len + (size_t)seq_len * (size_t)size_per_head
                          + (size_t)seq_len * (size_t)size_per_head)
                       * (size_t)wordSize;
        size_t size3     = (m * k + k * inter_size + m * inter_size) * wordSize;
        size_t size4     = (m * k + k * vocab_size + m * vocab_size) * wordSize;
        buf_size_in_byte = size1 > size2 ? size1 : size2;
        buf_size_in_byte = buf_size_in_byte > size3 ? buf_size_in_byte : size3;
        buf_size_in_byte = buf_size_in_byte > size4 ? buf_size_in_byte : size4;
        buf_size_in_byte +=
            ((data_type == HALF_DATATYPE || data_type == BFLOAT16_DATATYPE) ? CUBLAS_WORKSPACE_SIZE : 0);
    }
    return buf_size_in_byte;
}

size_t calGemmTestBufSizeInByteXlnet(
    int batch_size, int seq_len, int head_num, int size_per_head, int inter_size, int hidden_units, int is_fp16)
{
    int M[10]          = {0};
    int N[10]          = {0};
    int K[10]          = {0};
    int batchCount[10] = {0};

    // gemm1
    M[0]          = hidden_units;
    N[0]          = seq_len * batch_size;
    K[0]          = hidden_units;
    batchCount[0] = 3;

    // gemm2
    M[1]          = hidden_units;
    N[1]          = seq_len * 2;
    K[1]          = hidden_units;
    batchCount[1] = 1;

    // gemm3
    M[2]          = seq_len;
    N[2]          = seq_len;
    K[2]          = size_per_head;
    batchCount[2] = batch_size * head_num;

    // gemm4
    M[3]          = seq_len * 2;
    N[3]          = seq_len;
    K[3]          = size_per_head;
    batchCount[3] = batch_size * head_num;

    // gemm5
    M[4]          = 2;
    N[4]          = seq_len;
    K[4]          = size_per_head;
    batchCount[4] = batch_size * head_num;

    // gemm6
    M[5] = head_num;
    N[5] = seq_len;
    K[5] = 2;
    // gemm7
    M[6]          = size_per_head;
    N[6]          = seq_len;
    K[6]          = seq_len;
    batchCount[6] = batch_size * head_num;

    // gemm8
    M[7]          = hidden_units;
    N[7]          = seq_len;
    K[7]          = hidden_units;
    batchCount[7] = batch_size;

    // gemm9
    M[8]          = inter_size;
    N[8]          = seq_len;
    K[8]          = hidden_units;
    batchCount[8] = batch_size;

    // gemm10
    M[9]          = hidden_units;
    N[9]          = seq_len;
    K[9]          = inter_size;
    batchCount[9] = batch_size;

    size_t max_size = 0;

    for (int i = 0; i < 10; ++i) {
        int    m = M[i], n = N[i], k = K[i];
        size_t size = (M[i] * N[i] + M[i] * K[i] + N[i] * K[i]) * batchCount[i];
        if (size > max_size) {
            max_size = size;
        }
    }

    int size_per_ele = 4;
    if (is_fp16 == true) {
        size_per_ele = 2;
    }
    return max_size * size_per_ele;
}

lvhan028's avatar
lvhan028 committed
990
}  // namespace turbomind