gemm.cc 44.3 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/*
 * Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

lvhan028's avatar
lvhan028 committed
17
#include "src/turbomind/utils/gemm.h"
Li Zhang's avatar
Li Zhang committed
18

lvhan028's avatar
lvhan028 committed
19
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
20
21
22
23
24
25
26
27
28

/* ***************************** GEMM Impl ******************************** */

Gemm::Gemm(IAllocator* allocator, cudaStream_t stream, std::string config_file)
{
    allocator_ = allocator;
    stream_    = stream;
    mutex_     = new std::mutex();  // mutex per process
    check_cuda_error(cublasCreate(&cublas_handle_));
xiabo's avatar
xiabo committed
29
    // check_cuda_error(cublasLtCreate(&cublaslt_handle_));
Li Zhang's avatar
Li Zhang committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    check_cuda_error(cublasSetStream(cublas_handle_, stream));

    if (allocator_ != nullptr) {
        workspace_ = allocator_->reMalloc(workspace_, WORKSPACE_SIZE);
    }
    loadGemmConfig(config_file);
}

Gemm::~Gemm()
{
    if (allocator_ != nullptr) {
        allocator_->free((void**)(&workspace_));
        allocator_ = nullptr;
    }
xiabo's avatar
xiabo committed
44
    // cublasLtDestroy(cublaslt_handle_);
Li Zhang's avatar
Li Zhang committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    cublasDestroy(cublas_handle_);
    delete cublas_algo_map_;
    delete mutex_;
}

std::string Gemm::toString()
{
    const char* a_type_str       = a_type_ == TYPE_FP16 ? "FP16" : "FP32";
    const char* b_type_str       = b_type_ == TYPE_FP16 ? "FP16" : "FP32";
    const char* c_type_str       = c_type_ == TYPE_FP16 ? "FP16" : "FP32";
    const char* compute_type_str = compute_type_ == TYPE_FP16 ? "FP16" : "FP32";
    return fmtstr(
        "Gemm[a_type=%s, b_type=%s, c_type=%s, compute_type=%s]", a_type_str, b_type_str, c_type_str, compute_type_str);
}

void Gemm::setAllocator(IAllocator* allocator)
{
    if (allocator_ != nullptr && workspace_ != nullptr) {
        allocator_->free((void**)(&workspace_));
    }
    allocator_ = allocator;
    if (allocator_ != nullptr) {
        workspace_ = allocator_->reMalloc(workspace_, WORKSPACE_SIZE);
    }
}

void Gemm::setCudaStream(cudaStream_t& stream)
{
    stream_ = stream;
    cublasSetStream(cublas_handle_, stream);
}

void Gemm::setComputeType(DataType compute_type)
{
    checkDataTypeValidity(compute_type);
    compute_type_ = compute_type;
}

void Gemm::setTypes(DataType a_type, DataType b_type, DataType c_type, DataType compute_type)
{
    checkDataTypeValidity(a_type);
    checkDataTypeValidity(b_type);
    checkDataTypeValidity(c_type);
    a_type_ = a_type;
    b_type_ = b_type;
    c_type_ = c_type;
    setComputeType(compute_type);
}

template<typename T>
void Gemm::setDefaultTypes()
{
    if (std::is_same<T, float>::value) {
        setTypes(TYPE_FP32, TYPE_FP32, TYPE_FP32, TYPE_FP32);
    }
    else if (std::is_same<T, half>::value) {
        setTypes(TYPE_FP16, TYPE_FP16, TYPE_FP16, TYPE_FP16);
    }
    else {
        throw GemmNotSupportedException("Gemm supports float or half type.");
    }
}

void Gemm::loadGemmConfig(std::string config_file)
{
    if (cublas_algo_map_ != nullptr) {
        delete cublas_algo_map_;  // unload the previous cublas map.
    }
    cublas_algo_map_ = new cublasAlgoMap(config_file);
}

void Gemm::gemm(const GemmOp              transa,
                const GemmOp              transb,
                const size_t              m,
                const size_t              n,
                const size_t              k,
                const void*               input,
                const DenseWeight<float>& weight,
                void*                     output,
                const float               alpha,
                const float               beta)
{
    gemm(transa,
         transb,
         m,
         n,
         k,
         input,
         a_type_,
         (transa == GEMM_OP_N) ? k : m,
         (const void*)weight.kernel,
         b_type_,
         (transb == GEMM_OP_N) ? n : k,
         output,
         c_type_,
         n,
         alpha,
         beta);
}

void Gemm::gemm(const GemmOp             transa,
                const GemmOp             transb,
                const size_t             m,
                const size_t             n,
                const size_t             k,
                const void*              input,
                const DenseWeight<half>& weight,
                void*                    output,
                const float              alpha,
                const float              beta)
{
    gemm(transa,
         transb,
         m,
         n,
         k,
         input,
         a_type_,
         (transa == GEMM_OP_N) ? k : m,
         (const void*)weight.kernel,
         b_type_,
         (transb == GEMM_OP_N) ? n : k,
         output,
         c_type_,
         n,
         alpha,
         beta);
}

void Gemm::gemm(const GemmOp transa,
                const GemmOp transb,
                const size_t m,
                const size_t n,
                const size_t k,
                const void*  A,
                const void*  B,
                void*        C,
                const float  alpha,
                const float  beta)
{
    size_t lda = (transa == GEMM_OP_N) ? k : m;
    size_t ldb = (transb == GEMM_OP_N) ? n : k;
    size_t ldc = n;
    gemm(transa, transb, m, n, k, A, a_type_, lda, B, b_type_, ldb, C, c_type_, ldc, alpha, beta);
}

void Gemm::gemm(const GemmOp transa,
                const GemmOp transb,
                const size_t m,
                const size_t n,
                const size_t k,
                const void*  A,
                const size_t lda,
                const void*  B,
                const size_t ldb,
                void*        C,
                const size_t ldc,
                const float  alpha,
                const float  beta)
{
    gemm(transa, transb, m, n, k, A, a_type_, lda, B, b_type_, ldb, C, c_type_, ldc, alpha, beta);
}

void Gemm::gemm(const GemmOp   transa,
                const GemmOp   transb,
                const size_t   m,
                const size_t   n,
                const size_t   k,
                const void*    A,
                const DataType Atype,
                const size_t   lda,
                const void*    B,
                const DataType Btype,
                const size_t   ldb,
                void*          C,
                const DataType Ctype,
                const size_t   ldc,
                const float    alpha,
                const float    beta)
{
lvhan028's avatar
lvhan028 committed
225
    TM_LOG_TRACE("Gemm::gemm [m=%ld, n=%ld, k=%ld, lda=%ld, ldb=%ld, ldc=%ld]", m, n, k, lda, ldb, ldc);
Li Zhang's avatar
Li Zhang committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

    // Implementation copied from cublasMMWrapper::Gemm
    // Switch A and B since both cublas and cublasLt assume a column major layout,
    // while A and B are both row major layout.
    const void* a_data_ptr = B;
    const void* b_data_ptr = A;

    cublasOperation_t a_op = getCublasOperation(transb);
    cublasOperation_t b_op = getCublasOperation(transa);

    cudaDataType_t a_type = getCublasDataType(Btype);
    cudaDataType_t b_type = getCublasDataType(Atype);
    cudaDataType_t c_type = getCublasDataType(Ctype);

    // swap m and n
    const size_t _m = n;
    const size_t _n = m;

    // swap lda and ldb;
    const size_t _lda = ldb;
    const size_t _ldb = lda;

    mutex_->lock();
    // Use cublas as default in FP32 and cublasLt as default in FP16
    bool is_fp16_compute_type = compute_type_ == TYPE_FP16;
xiabo's avatar
xiabo committed
251
252
    // bool using_cublasLt       = Atype == TYPE_FP16;
    bool using_cublasLt       = (Atype == TYPE_FP16) ? false : false;
Li Zhang's avatar
Li Zhang committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    int  batch_count          = 1;

    half        h_alpha = (half)alpha;
    half        h_beta  = (half)beta;
    const void* alpha_ptr =
        is_fp16_compute_type ? reinterpret_cast<const void*>(&h_alpha) : reinterpret_cast<const void*>(&alpha);
    const void* beta_ptr =
        is_fp16_compute_type ? reinterpret_cast<const void*>(&h_beta) : reinterpret_cast<const void*>(&beta);

    // TODO: unify CUBLAS_DATA_TYPE and DataType.
    int findAlgo =
        cublas_algo_map_->isExist(batch_count, _m, _n, k, (a_type == CUDA_R_16F) ? HALF_DATATYPE : FLOAT_DATATYPE);
    cublasLtMatmulAlgo_info info =
        cublas_algo_map_->getAlgo(batch_count, _m, _n, k, (a_type == CUDA_R_16F) ? HALF_DATATYPE : FLOAT_DATATYPE);
    if (findAlgo) {
        using_cublasLt = (info.stages != -1);
    }

xiabo's avatar
xiabo committed
271
    // if (using_cublasLt) {
zhouxiang's avatar
zhouxiang committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
//     if(0) {
//         const size_t a_rows = (a_op == getCublasOperation(GEMM_OP_N)) ? _m : k;
//         const size_t a_cols = (a_op == getCublasOperation(GEMM_OP_N)) ? k : _m;
//         const size_t b_rows = (b_op == getCublasOperation(GEMM_OP_N)) ? k : _n;
//         const size_t b_cols = (b_op == getCublasOperation(GEMM_OP_N)) ? _n : k;

//         cublasLtMatmulDesc_t   matmul_desc = NULL;
//         cublasLtMatrixLayout_t a_desc = NULL, b_desc = NULL, c_desc = NULL;
//         cudaDataType_t         scale_type   = getCublasDataType(compute_type_);
//         auto                   compute_type = getCublasComputeType(compute_type_);

//         // --------------------------------------
//         // Create descriptors for the original matrices
//         cublasLtMatrixLayoutCreate(&a_desc, a_type, a_rows, a_cols, _lda);
//         cublasLtMatrixLayoutCreate(&b_desc, b_type, b_rows, b_cols, _ldb);
//         cublasLtMatrixLayoutCreate(&c_desc, c_type, _m, _n, ldc);
// #if (CUDART_VERSION >= 11000)
//         cublasLtMatmulDescCreate(&matmul_desc, compute_type, scale_type);
// #else
//         cublasLtMatmulDescCreate(&matmul_desc, compute_type);
// #endif

//         cublasLtMatmulDescSetAttribute(matmul_desc, CUBLASLT_MATMUL_DESC_TRANSA, &a_op, sizeof(cublasOperation_t));
//         cublasLtMatmulDescSetAttribute(matmul_desc, CUBLASLT_MATMUL_DESC_TRANSB, &b_op, sizeof(cublasOperation_t));

//         cublasLtMatmulAlgo_t algo;
//         void*                workspace      = workspace_;
//         int                  workspace_size = workspace_ == nullptr ? 0 : CUBLAS_WORKSPACE_SIZE;
//         if (findAlgo) {
//             if (info.workspaceSize > workspace_size) {
//                 findAlgo = 0;
//             }
//             else {
//                 cublasLtMatmulAlgoInit(
//                     cublaslt_handle_, compute_type, scale_type, a_type, b_type, c_type, c_type, info.algoId, &algo);
//                 cublasLtMatmulAlgoConfigSetAttribute(
//                     &algo, CUBLASLT_ALGO_CONFIG_CUSTOM_OPTION, &(info.customOption), sizeof(info.customOption));
//                 cublasLtMatmulAlgoConfigSetAttribute(
//                     &algo, CUBLASLT_ALGO_CONFIG_TILE_ID, &(info.tile), sizeof(info.tile));
//                 cublasLtMatmulAlgoConfigSetAttribute(
//                     &algo, CUBLASLT_ALGO_CONFIG_SPLITK_NUM, &(info.splitK_val), sizeof(info.splitK_val));
//                 cublasLtMatmulAlgoConfigSetAttribute(
//                     &algo, CUBLASLT_ALGO_CONFIG_CTA_SWIZZLING, &(info.swizzle), sizeof(info.swizzle));
//                 cublasLtMatmulAlgoConfigSetAttribute(
//                     &algo, CUBLASLT_ALGO_CONFIG_REDUCTION_SCHEME, &(info.reductionScheme), sizeof(int));
// #if (CUDART_VERSION >= 11000)
//                 cublasLtMatmulAlgoConfigSetAttribute(
//                     &algo, CUBLASLT_ALGO_CONFIG_STAGES_ID, &(info.stages), sizeof(info.stages));
// #endif
//             }
//         }

//         cublasLtMatmul(cublaslt_handle_,
//                        matmul_desc,
//                        alpha_ptr,
//                        a_data_ptr,
//                        a_desc,
//                        b_data_ptr,
//                        b_desc,
//                        beta_ptr,
//                        C,
//                        c_desc,
//                        C,
//                        c_desc,
//                        (findAlgo == 1 ? (&algo) : NULL),
//                        workspace,
//                        workspace_size,
//                        stream_);

//         cublasLtMatmulDescDestroy(matmul_desc);
//         cublasLtMatrixLayoutDestroy(a_desc);
//         cublasLtMatrixLayoutDestroy(b_desc);
//         cublasLtMatrixLayoutDestroy(c_desc);
//         sync_check_cuda_error();
//     }
//     else {
Li Zhang's avatar
Li Zhang committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
        cudaDataType_t compute_type = getCublasDataType(compute_type_);
        int            cublas_algo  = info.algoId;
        check_cuda_error(cublasGemmEx(cublas_handle_,
                                      a_op,
                                      b_op,
                                      _m,
                                      _n,
                                      k,
                                      alpha_ptr,
                                      a_data_ptr,
                                      a_type,
                                      _lda,
                                      b_data_ptr,
                                      b_type,
                                      _ldb,
                                      beta_ptr,
                                      C,
                                      c_type,
                                      ldc,
                                      compute_type,
                                      static_cast<cublasGemmAlgo_t>(cublas_algo)));
        sync_check_cuda_error();
zhouxiang's avatar
zhouxiang committed
370
    // }
Li Zhang's avatar
Li Zhang committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
    mutex_->unlock();
}

void Gemm::batchedGemm(const GemmOp       transa,
                       const GemmOp       transb,
                       const size_t       m,
                       const size_t       n,
                       const size_t       k,
                       const void* const* A,
                       const void* const* B,
                       void* const*       C,
                       const size_t       batch_size,
                       const float        alpha,
                       const float        beta)
{
    size_t lda = (transa == GEMM_OP_N) ? k : m;
    size_t ldb = (transb == GEMM_OP_N) ? n : k;
    size_t ldc = n;
    batchedGemm(transa, transb, m, n, k, A, a_type_, lda, B, b_type_, ldb, C, c_type_, ldc, batch_size, alpha, beta);
}

void Gemm::batchedGemm(const GemmOp       transa,
                       const GemmOp       transb,
                       const size_t       m,
                       const size_t       n,
                       const size_t       k,
                       const void* const* A,
                       const size_t       lda,
                       const void* const* B,
                       const size_t       ldb,
                       void* const*       C,
                       const size_t       ldc,
                       const size_t       batch_size,
                       const float        alpha,
                       const float        beta)
{
    batchedGemm(transa, transb, m, n, k, A, a_type_, lda, B, b_type_, ldb, C, c_type_, ldc, batch_size, alpha, beta);
}

void Gemm::batchedGemm(const GemmOp       transa,
                       const GemmOp       transb,
                       const size_t       m,
                       const size_t       n,
                       const size_t       k,
                       const void* const* A,
                       const DataType     Atype,
                       const size_t       lda,
                       const void* const* B,
                       const DataType     Btype,
                       const size_t       ldb,
                       void* const*       C,
                       const DataType     Ctype,
                       const size_t       ldc,
                       const size_t       batch_size,
                       const float        alpha,
                       const float        beta)
{
lvhan028's avatar
lvhan028 committed
428
    TM_LOG_TRACE(
Li Zhang's avatar
Li Zhang committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
        "Gemm::batchedGemm [b=%ld m=%ld, n=%ld, k=%ld, lda=%ld, ldb=%ld, ldc=%ld]", batch_size, m, n, k, lda, ldb, ldc);

    // Switch A and B.
    const void* const* a_data_ptr = B;
    const void* const* b_data_ptr = A;

    cublasOperation_t a_op = getCublasOperation(transb);
    cublasOperation_t b_op = getCublasOperation(transa);

    cudaDataType_t a_type = getCublasDataType(Btype);
    cudaDataType_t b_type = getCublasDataType(Atype);
    cudaDataType_t c_type = getCublasDataType(Ctype);

    // swap m and n, lda and ldb
    const size_t _m   = n;
    const size_t _n   = m;
    const size_t _lda = ldb;
    const size_t _ldb = lda;

    half h_alpha = (half)alpha;
    half h_beta  = (half)beta;

    mutex_->lock();
    bool        is_fp16_compute_type = compute_type_ == TYPE_FP16;
    const void* alpha_ptr =
        is_fp16_compute_type ? reinterpret_cast<const void*>(&h_alpha) : reinterpret_cast<const void*>(&alpha);
    const void* beta_ptr =
        is_fp16_compute_type ? reinterpret_cast<const void*>(&h_beta) : reinterpret_cast<const void*>(&beta);
    cublasLtMatmulAlgo_info info =
        cublas_algo_map_->getAlgo(batch_size, m, n, k, (a_type == CUDA_R_16F) ? HALF_DATATYPE : FLOAT_DATATYPE);

    check_cuda_error(cublasGemmBatchedEx(cublas_handle_,
                                         a_op,
                                         b_op,
                                         _m,
                                         _n,
                                         k,
                                         alpha_ptr,
                                         a_data_ptr,
                                         a_type,
                                         _lda,
                                         b_data_ptr,
                                         b_type,
                                         _ldb,
                                         beta_ptr,
                                         C,
                                         c_type,
                                         ldc,
                                         batch_size,
                                         getCublasComputeType(compute_type_),
                                         static_cast<cublasGemmAlgo_t>(info.algoId)));
    mutex_->unlock();
}

void Gemm::stridedBatchedGemm(GemmOp       transa,
                              GemmOp       transb,
                              const size_t m,
                              const size_t n,
                              const size_t k,
                              const void*  A,
                              const void*  B,
                              void*        C,
                              const size_t batch_size,
                              const float  alpha,
                              const float  beta)
{
    size_t  lda     = (transa == GEMM_OP_N) ? k : m;
    size_t  ldb     = (transb == GEMM_OP_N) ? n : k;
    size_t  ldc     = n;
    int64_t stridea = m * k;
    int64_t strideb = k * n;
    int64_t stridec = m * n;

    stridedBatchedGemm(transa,
                       transb,
                       m,
                       n,
                       k,
                       A,
                       a_type_,
                       lda,
                       stridea,
                       B,
                       b_type_,
                       ldb,
                       strideb,
                       C,
                       c_type_,
                       ldc,
                       stridec,
                       batch_size,
                       compute_type_,
                       alpha,
                       beta);
}

void Gemm::stridedBatchedGemm(GemmOp        transa,
                              GemmOp        transb,
                              const size_t  m,
                              const size_t  n,
                              const size_t  k,
                              const void*   A,
                              const int64_t strideA,
                              const void*   B,
                              const int64_t strideB,
                              void*         C,
                              const int64_t strideC,
                              const size_t  batch_size,
                              const float   alpha,
                              const float   beta)
{
    size_t lda = (transa == GEMM_OP_N) ? k : m;
    size_t ldb = (transb == GEMM_OP_N) ? n : k;
    size_t ldc = n;
    stridedBatchedGemm(transa,
                       transb,
                       m,
                       n,
                       k,
                       A,
                       a_type_,
                       lda,
                       strideA,
                       B,
                       b_type_,
                       ldb,
                       strideB,
                       C,
                       c_type_,
                       ldc,
                       strideC,
                       batch_size,
                       compute_type_,
                       alpha,
                       beta);
}

void Gemm::stridedBatchedGemm(GemmOp        transa,
                              GemmOp        transb,
                              const size_t  m,
                              const size_t  n,
                              const size_t  k,
                              const void*   A,
                              const size_t  lda,
                              const int64_t strideA,
                              const void*   B,
                              const size_t  ldb,
                              const int64_t strideB,
                              void*         C,
                              const size_t  ldc,
                              const int64_t strideC,
                              const size_t  batch_size,
                              const float   alpha,
                              const float   beta)
{
    stridedBatchedGemm(transa,
                       transb,
                       m,
                       n,
                       k,
                       A,
                       a_type_,
                       lda,
                       strideA,
                       B,
                       b_type_,
                       ldb,
                       strideB,
                       C,
                       c_type_,
                       ldc,
                       strideC,
                       batch_size,
                       compute_type_,
                       alpha,
                       beta);
}

void Gemm::stridedBatchedGemm(GemmOp        transa,
                              GemmOp        transb,
                              const size_t  m,
                              const size_t  n,
                              const size_t  k,
                              const void*   A,
                              DataType      Atype,
                              const size_t  lda,
                              const int64_t strideA,
                              const void*   B,
                              DataType      Btype,
                              const size_t  ldb,
                              const int64_t strideB,
                              void*         C,
                              DataType      Ctype,
                              const size_t  ldc,
                              const int64_t strideC,
                              const size_t  batch_size,
                              DataType      compute_type,
                              const float   alpha,
                              const float   beta)
{
lvhan028's avatar
lvhan028 committed
629
    TM_LOG_TRACE("Gemm::stridedBatchedGemm [b=%ld, m=%ld, n=%ld, k=%ld, lda=%ld, ldb=%ld, ldc=%ld]",
Li Zhang's avatar
Li Zhang committed
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
                 batch_size,
                 m,
                 n,
                 k,
                 lda,
                 ldb,
                 ldc);

    // Switch A and B.
    const void* a_data_ptr = B;
    const void* b_data_ptr = A;

    cublasOperation_t a_op = getCublasOperation(transb);
    cublasOperation_t b_op = getCublasOperation(transa);

    cudaDataType_t a_type = getCublasDataType(Btype);
    cudaDataType_t b_type = getCublasDataType(Atype);
    cudaDataType_t c_type = getCublasDataType(Ctype);

    // swap m and n, lda and ldb, stride A and B
    const size_t  _m       = n;
    const size_t  _n       = m;
    const size_t  _lda     = ldb;
    const size_t  _ldb     = lda;
    const int64_t _stridea = strideB;
    const int64_t _strideb = strideA;

    half h_alpha = (half)alpha;
    half h_beta  = (half)beta;

    mutex_->lock();
    bool        is_fp16_compute_type = compute_type_ == TYPE_FP16;
    const void* alpha_ptr =
        is_fp16_compute_type ? reinterpret_cast<const void*>(&h_alpha) : reinterpret_cast<const void*>(&alpha);
    const void* beta_ptr =
        is_fp16_compute_type ? reinterpret_cast<const void*>(&h_beta) : reinterpret_cast<const void*>(&beta);
    cublasLtMatmulAlgo_info info =
        cublas_algo_map_->getAlgo(batch_size, m, n, k, (a_type == CUDA_R_16F) ? HALF_DATATYPE : FLOAT_DATATYPE);

    check_cuda_error(cublasGemmStridedBatchedEx(cublas_handle_,
                                                a_op,
                                                b_op,
                                                _m,
                                                _n,
                                                k,
                                                alpha_ptr,
                                                a_data_ptr,
                                                a_type,
                                                _lda,
                                                _stridea,
                                                b_data_ptr,
                                                b_type,
                                                _ldb,
                                                _strideb,
                                                beta_ptr,
                                                C,
                                                c_type,
                                                ldc,
                                                strideC,
                                                batch_size,
                                                getCublasComputeType(compute_type),
                                                static_cast<cublasGemmAlgo_t>(info.algoId)));
    mutex_->unlock();
}

void Gemm::checkDataTypeValidity(const DataType& type)
{
    if (type != TYPE_FP32 && type != TYPE_FP16) {
        throw GemmNotSupportedException("Gemm supports TYPE_FP16 or TYPE_FP32");
    }
}

/* ************************* End of GEMM Impl **************************** */

// void Int8Gemm::gemm(Tensor& C,
//                     const GemmOp transa,
//                     const GemmOp transb,
//                     const Tensor& A,
//                     const Tensor& B,
//                     const float alpha,
//                     const float beta)
// {

// }

/* ************************* SpGEMM Impl *********************************** */
#ifdef SPARSITY_ENABLED
SpGemm::SpGemm(IAllocator* allocator, cudaStream_t stream, std::string config_file, std::string spconfig_file):
    Gemm(allocator, stream, config_file)
{
    CHECK_CUSPARSE(cusparseLtInit(&cusparselt_handle_));
    // TODO(jaedeokk):
    //   Let's make cublasAlgoMap load gemm/spgemm config separtely,
    //   allowing us to inherit Gemm's constructor.
    // cublas_algo_map_.loadSpGemmConfig(spconfig_file);  // enable this line later.

    a_type_       = TYPE_FP16;
    b_type_       = TYPE_FP16;
    c_type_       = TYPE_FP16;
    compute_type_ = TYPE_FP16;
}

SpGemm::~SpGemm()
{
    cusparseLtDestroy(&cusparselt_handle_);
    // Need to destroy matmul description cache.
    for (auto& kv : a_desc_map_) {  // kv = (mark, a_desc)
        cusparseLtMatDescriptorDestroy(&a_desc_map_[kv.first]);
    }
    for (auto& kv : b_desc_map_) {  // kv = (mark, b_desc)
        cusparseLtMatDescriptorDestroy(&b_desc_map_[kv.first]);
    }
    for (auto& kv : c_desc_map_) {  // kv = (mark, c_desc)
        cusparseLtMatDescriptorDestroy(&c_desc_map_[kv.first]);
    }
}

std::string SpGemm::toString()
{
    const char* a_type_str       = a_type_ == TYPE_FP16 ? "FP16" : "FP32";
    const char* b_type_str       = b_type_ == TYPE_FP16 ? "FP16" : "FP32";
    const char* c_type_str       = c_type_ == TYPE_FP16 ? "FP16" : "FP32";
    const char* compute_type_str = compute_type_ == TYPE_FP16 ? "FP16" : "FP32";
    return fmtstr("SpGemm[a_type=%s, b_type=%s, c_type=%s, compute_type=%s]",
                  a_type_str,
                  b_type_str,
                  c_type_str,
                  compute_type_str);
}

void SpGemm::loadGemmConfig(std::string config_file, std::string spconfig_file)
{
    if (cublas_algo_map_ != nullptr) {
        delete cublas_algo_map_;  // unload algo map.
    }
    cublas_algo_map_ = new cublasAlgoMap(config_file, spconfig_file);
}

void SpGemm::checkDataTypeValidity(const DataType& type)
{
    if (type != TYPE_FP16) {
        throw GemmNotSupportedException("Sparse GEMM only supports FP16 data type now.");
    }
}

bool SpGemm::useBaseGemm(size_t batch_size, size_t m, size_t n, size_t k)
{
    return !cublas_algo_map_->isUseSparse(batch_size, m, n, k);
}

// Temporal gemm helper mtehod to use template T.
template<typename T>
void SpGemm::weightGemmHelper(const GemmOp          transa,
                              const GemmOp          transb,
                              const size_t          m,
                              const size_t          n,
                              const size_t          k,
                              const void*           input,
                              const DenseWeight<T>& weight,
                              void*                 output,
                              const float           alpha,
                              const float           beta)
{
    size_t lda = (transa == GEMM_OP_N) ? k : m;
    size_t ldb = (transb == GEMM_OP_N) ? n : k;
    size_t ldc = n;
    if (useBaseGemm(1, m, n, k) || weight.sp_kernel == nullptr) {
        Gemm::gemm(transa,
                   transb,
                   m,
                   n,
                   k,
                   input,
                   a_type_,
                   lda,
                   (const void*)weight.kernel,
                   b_type_,
                   ldb,
                   output,
                   c_type_,
                   ldc,
                   alpha,
                   beta);
    }
    else {
        gemm(transa,
             transb,
             m,
             n,
             k,
             input,
             a_type_,
             lda,
             (const void*)weight.sp_kernel,
             b_type_,
             ldb,
             output,
             c_type_,
             ldc,
             alpha,
             beta);
    }
}

void SpGemm::gemm(const GemmOp              transa,
                  const GemmOp              transb,
                  const size_t              m,
                  const size_t              n,
                  const size_t              k,
                  const void*               input,
                  const DenseWeight<float>& weight,
                  void*                     output,
                  const float               alpha,
                  const float               beta)
{
    weightGemmHelper<float>(transa, transb, m, n, k, input, weight, output, alpha, beta);
}
void SpGemm::gemm(const GemmOp             transa,
                  const GemmOp             transb,
                  const size_t             m,
                  const size_t             n,
                  const size_t             k,
                  const void*              input,
                  const DenseWeight<half>& weight,
                  void*                    output,
                  const float              alpha,
                  const float              beta)
{
    weightGemmHelper<half>(transa, transb, m, n, k, input, weight, output, alpha, beta);
}

void SpGemm::gemm(const GemmOp   transa,
                  const GemmOp   transb,
                  const size_t   m,
                  const size_t   n,
                  const size_t   k,
                  const void*    A,
                  const DataType Atype,
                  const size_t   lda,
                  const void*    B,
                  const DataType Btype,
                  const size_t   ldb,
                  void*          C,
                  const DataType Ctype,
                  const size_t   ldc,
                  const float    alpha,
                  const float    beta)
{
lvhan028's avatar
lvhan028 committed
878
    TM_LOG_TRACE("SpGemm::gemm [m=%ld, n=%ld, k=%ld, lda=%ld, ldb=%ld, ldc=%ld]", m, n, k, lda, ldb, ldc);
Li Zhang's avatar
Li Zhang committed
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
    checkDataTypeValidity(Atype);
    checkDataTypeValidity(Btype);
    checkDataTypeValidity(Ctype);
    checkDataTypeValidity(compute_type_);

    if (useBaseGemm(1, m, n, k)) {
        // Compute by the base GEMM.
        Gemm::gemm(transa, transb, m, n, k, A, Atype, lda, B, Btype, ldb, C, Ctype, ldc, alpha, beta);
        return;
    }

    // Switch A/B due to column major layout in computation.
    //  Typical usecase of Gemm family is to compute Y = X * W where X is an
    //  input tensor and W is a kernel weight. Compression takes a lot time
    //  so only the kernel weight (which is fixed in inference time) can be
    //  sparse. Using B as sparse seems not stable, unfortunately.
    //  (e.g. caching matrix descriptions is not correctly working.)
    //  Thus, SpGemm considers a column major layout in computation to make
    //  C^T = B^T * A^T, where a kernel weight "B" is located at the front.
    const void* a_data = B;
    const void* b_data = A;

    cusparseOrder_t order = CUSPARSE_ORDER_COL;

    cusparseOperation_t opA = getCusparseOperation(transb);
    cusparseOperation_t opB = getCusparseOperation(transa);

    cudaDataType_t a_type = getCublasDataType(Btype);
    cudaDataType_t b_type = getCublasDataType(Atype);
    cudaDataType_t c_type = getCublasDataType(Ctype);

    const size_t _m   = n;
    const size_t _n   = m;
    const size_t _lda = ldb;
    const size_t _ldb = lda;

    const size_t a_rows = (opA == CUSPARSE_OPERATION_NON_TRANSPOSE) ? _m : k;
    const size_t a_cols = (opA == CUSPARSE_OPERATION_NON_TRANSPOSE) ? k : _m;
    const size_t b_rows = (opB == CUSPARSE_OPERATION_NON_TRANSPOSE) ? k : _n;
    const size_t b_cols = (opB == CUSPARSE_OPERATION_NON_TRANSPOSE) ? _n : k;
    const size_t c_rows = _m;
    const size_t c_cols = _n;

    const unsigned      alignment    = 16;
    cusparseComputeType compute_type = getCusparseComputeType(compute_type_);

    cusparseLtMatmulDescriptor_t   matmul;
    cusparseLtMatmulAlgSelection_t alg_sel;
    cusparseLtMatmulPlan_t         plan;

    char mark[256];
    sprintf(mark, "%d_%ld_%ld_%ld_%s_%s", 1, m, n, k, getGemmOpString(transb).c_str(), getGemmOpString(transa).c_str());
    if (a_desc_map_.find(mark) != a_desc_map_.end()) {
        CHECK_CUSPARSE(cusparseLtMatmulDescriptorInit(&cusparselt_handle_,
                                                      &matmul,
                                                      opA,
                                                      opB,
                                                      &a_desc_map_[mark],
                                                      &b_desc_map_[mark],
                                                      &c_desc_map_[mark],
                                                      &c_desc_map_[mark],
                                                      compute_type));
    }
    else {
        // initializing MatDesc takes a lot of time
        cusparseLtMatDescriptor_t a_desc, b_desc, c_desc;
        a_desc_map_[mark] = a_desc;
        b_desc_map_[mark] = b_desc;
        c_desc_map_[mark] = c_desc;
        CHECK_CUSPARSE(cusparseLtStructuredDescriptorInit(&cusparselt_handle_,
                                                          &a_desc_map_[mark],
                                                          a_rows,
                                                          a_cols,
                                                          _lda,
                                                          alignment,
                                                          a_type,
                                                          order,
                                                          CUSPARSELT_SPARSITY_50_PERCENT));
        CHECK_CUSPARSE(cusparseLtDenseDescriptorInit(
            &cusparselt_handle_, &b_desc_map_[mark], b_rows, b_cols, _ldb, alignment, b_type, order));
        CHECK_CUSPARSE(cusparseLtDenseDescriptorInit(
            &cusparselt_handle_, &c_desc_map_[mark], c_rows, c_cols, ldc, alignment, c_type, order));
        CHECK_CUSPARSE(cusparseLtMatmulDescriptorInit(&cusparselt_handle_,
                                                      &matmul,
                                                      opA,
                                                      opB,
                                                      &a_desc_map_[mark],
                                                      &b_desc_map_[mark],
                                                      &c_desc_map_[mark],
                                                      &c_desc_map_[mark],
                                                      compute_type));
    }

    mutex_->lock();
    CHECK_CUSPARSE(
        cusparseLtMatmulAlgSelectionInit(&cusparselt_handle_, &alg_sel, &matmul, CUSPARSELT_MATMUL_ALG_DEFAULT));
    int alg = cublas_algo_map_->getSpAlgo(1, a_rows, b_cols, a_cols);
    CHECK_CUSPARSE(cusparseLtMatmulAlgSetAttribute(
        &cusparselt_handle_, &alg_sel, CUSPARSELT_MATMUL_ALG_CONFIG_ID, &alg, sizeof(alg)));
    size_t workspace_size;
    CHECK_CUSPARSE(cusparseLtMatmulGetWorkspace(&cusparselt_handle_, &alg_sel, &workspace_size));
    CHECK_CUSPARSE(cusparseLtMatmulPlanInit(&cusparselt_handle_, &plan, &matmul, &alg_sel, workspace_size));

    void*        d_workspace = nullptr;  // Can we use the workspace of the class?
    int          num_streams = 1;
    cudaStream_t streams[1]  = {stream_};
    CHECK_CUSPARSE(cusparseLtMatmul(
        &cusparselt_handle_, &plan, &alpha, a_data, b_data, &beta, C, C, d_workspace, streams, num_streams))
    CHECK_CUSPARSE(cusparseLtMatmulPlanDestroy(&plan))
    mutex_->unlock();
    sync_check_cuda_error();
}
#endif

/* ************************* End of SpGEMM Impl ************************** */

/* ***************************** GEMM utils ****************************** */

std::shared_ptr<Gemm> createGemm(IAllocator* allocator, cudaStream_t stream, bool sparse, bool quantized)
{
lvhan028's avatar
lvhan028 committed
999
    TM_LOG_TRACE(
Li Zhang's avatar
Li Zhang committed
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
        "Create Gemm instance [sparse=%s, quantized=%s]", sparse ? "true" : "false", quantized ? "true" : "false");
    std::shared_ptr<Gemm> gemm;
    if (!sparse) {
        if (!quantized) {
            gemm = std::make_shared<Gemm>(allocator, stream);
        }
        else {
            throw GemmNotSupportedException("Int8 Gemm is not supported yet");
        }
    }
    else {
#ifdef SPARSITY_ENABLED
        if (sparse && !quantized) {
            gemm = std::make_shared<SpGemm>(allocator, stream);
        }
        else {
            throw GemmNotSupportedException("Int8 Sparse Gemm is not supported yet");
        }
#else
        throw GemmNotSupportedException("Sparsity support is not enabled. To enabled sparisty, "
                                        "please provide `-DSPARSITY_SUPPORT` flag for compilation.");
#endif
    }
    return gemm;
}

cudaDataType_t getCublasDataType(DataType dtype)
{
    switch (dtype) {
        case TYPE_FP16:
            return CUDA_R_16F;
        case TYPE_FP32:
            return CUDA_R_32F;
        default:
            throw GemmNotSupportedException("Not supported data type.");
    }
}

zhouxiang's avatar
zhouxiang committed
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
// #if (CUDART_VERSION >= 11000)
// cublasComputeType_t getCublasComputeType(DataType ctype)
// {
//     switch (ctype) {
//         case TYPE_FP16:
//             return CUBLAS_COMPUTE_16F;
//         case TYPE_FP32:
//             return CUBLAS_COMPUTE_32F;
//         default:
//             throw GemmNotSupportedException("Not supported cublas compute type.");
//     }
// }
// #else
Li Zhang's avatar
Li Zhang committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
cudaDataType_t getCublasComputeType(DataType ctype)
{
    switch (ctype) {
        case TYPE_FP16:
            return CUDA_R_16F;
        case TYPE_FP32:
            return CUDA_R_32F;
        default:
            throw GemmNotSupportedException("Not supported cublas compute type.");
    }
}
zhouxiang's avatar
zhouxiang committed
1062
// #endif
Li Zhang's avatar
Li Zhang committed
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109

cublasOperation_t getCublasOperation(GemmOp op)
{
    switch (op) {
        case GEMM_OP_N:
            return CUBLAS_OP_N;
        case GEMM_OP_T:
            return CUBLAS_OP_T;
        default:
            throw GemmNotSupportedException("Unknown GemmOp provided.");
    }
}

std::string getGemmOpString(const GemmOp& op)
{
    switch (op) {
        case GEMM_OP_T:
            return "T";
        case GEMM_OP_N:
            return "N";
    }
    throw GemmNotSupportedException("Unknown GemmOp provided.");
}

#ifdef SPARSITY_ENABLED
cusparseOperation_t getCusparseOperation(GemmOp op)
{
    switch (op) {
        case GEMM_OP_N:
            return CUSPARSE_OPERATION_NON_TRANSPOSE;
        case GEMM_OP_T:
            return CUSPARSE_OPERATION_TRANSPOSE;
        default:
            throw GemmNotSupportedException("Unknown GemmOp provided.");
    }
}

cusparseComputeType getCusparseComputeType(DataType ctype)
{
    if (ctype != TYPE_FP16) {
        throw GemmNotSupportedException("Sparse GEMM supports TYPE_FP16 compute type only.");
    }
    return CUSPARSE_COMPUTE_16F;
}

void pruneMatrixB(void* data, const cudaStream_t& stream, const size_t k, const size_t n, const GemmOp trans)
{
lvhan028's avatar
lvhan028 committed
1110
    TM_LOG_TRACE("Prune matrix B [k=%ld, n=%ld, op=%s]", k, n, getGemmOpString(trans).c_str());
Li Zhang's avatar
Li Zhang committed
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145

    // Due to A/B switching, the matrix B will be used as a matrix A.
    const cusparseOrder_t order     = CUSPARSE_ORDER_COL;
    const size_t          rows      = (trans == GEMM_OP_N) ? n : k;
    const size_t          cols      = (trans == GEMM_OP_N) ? k : n;
    const size_t          ld        = rows;
    const unsigned        alignment = 16;

    const cusparseLtPruneAlg_t prune_alg = CUSPARSELT_PRUNE_SPMMA_STRIP;
    const cusparseOperation_t  op        = getCusparseOperation(trans);
    const cudaDataType_t       dtype     = CUDA_R_16F;  // fixed under cusparselt == 0.2.0.

    // 0: B is sparse,  1: A is sparse
    // B matrix will be used as A matrix at the SpGemm::gemm.
    const int is_sparse_a = 1;

    // TODO: Let the resource manager handle GPU-related resources later.
    cusparseLtHandle_t handle;
    CHECK_CUSPARSE(cusparseLtInit(&handle));
    cusparseLtMatDescriptor_t mat_desc;
    CHECK_CUSPARSE(cusparseLtStructuredDescriptorInit(
        &handle, &mat_desc, rows, cols, ld, alignment, dtype, order, CUSPARSELT_SPARSITY_50_PERCENT));
    CHECK_CUSPARSE(cusparseLtSpMMAPrune2(&handle, &mat_desc, is_sparse_a, op, data, data, prune_alg, stream));
    CHECK_CUSPARSE(cusparseLtMatDescriptorDestroy(&mat_desc));
    CHECK_CUSPARSE(cusparseLtDestroy(&handle));
}

size_t compressMatrixB(void**              output,
                       IAllocator&         allocator,
                       const cudaStream_t& stream,
                       const void*         input,
                       const size_t        k,
                       const size_t        n,
                       const GemmOp        trans)
{
lvhan028's avatar
lvhan028 committed
1146
    TM_LOG_TRACE("compressMatrix [k=%ld, n=%ld, dtype=FP16]", k, n);
Li Zhang's avatar
Li Zhang committed
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185

    // swap A/B due to column/row major layout mismatch.
    cusparseOrder_t order = CUSPARSE_ORDER_COL;
    const size_t    rows  = (trans == GEMM_OP_N) ? n : k;
    const size_t    cols  = (trans == GEMM_OP_N) ? k : n;
    const size_t    ld    = rows;

    cudaDataType_t            dtype    = CUDA_R_16F;  // fixed under cusparselt == 0.2.0.
    cusparseLtSparsity_t      sparsity = CUSPARSELT_SPARSITY_50_PERCENT;
    cusparseOperation_t       op       = getCusparseOperation(trans);
    cusparseLtMatDescriptor_t mat_desc;
    const unsigned            alignment   = 16;
    const int                 is_sparse_a = 1;  // 0: B is sparse,  1: A is sparse

    cusparseLtHandle_t handle;
    CHECK_CUSPARSE(cusparseLtInit(&handle));

    CHECK_CUSPARSE(
        cusparseLtStructuredDescriptorInit(&handle, &mat_desc, rows, cols, ld, alignment, dtype, order, sparsity))

    size_t compressed_size = 0;
    CHECK_CUSPARSE(cusparseLtSpMMACompressedSize2(&handle, &mat_desc, &compressed_size));
    if (compressed_size == 0) {
        throw GemmInvalidException("Fail to compute correct compressed_size, got 0. This error may be "
                                   "caused by a too small input matrix.");
    }

    *output = allocator.malloc(compressed_size, false);
    CHECK_CUSPARSE(cusparseLtSpMMACompress2(&handle, &mat_desc, is_sparse_a, op, input, *output, stream))

    CHECK_CUSPARSE(cusparseLtMatDescriptorDestroy(&mat_desc));
    CHECK_CUSPARSE(cusparseLtDestroy(&handle));
    return compressed_size;
}

#endif

/* ************************* End of GEMM utils **************************** */

lvhan028's avatar
lvhan028 committed
1186
}  // end of namespace turbomind