custom_ar_comm.cc 7.9 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
/*
 * Copyright (c) 2022-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "custom_ar_comm.h"

lvhan028's avatar
lvhan028 committed
19
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

template<typename T>
CustomAllReduceComm<T>::CustomAllReduceComm(size_t rank_size, size_t rank): rank_size_(rank_size), rank_(rank)
{
    param_.barrier_flag = 0;
    // NOTE: assume All Reduce happens within the node (DGX A100)
    param_.rank       = rank_;
    param_.local_rank = rank_;
    param_.node_id    = 0;
}

template<typename T>
CustomAllReduceComm<T>::~CustomAllReduceComm()
{
    cudaPointerAttributes comm_buffer_attributes, barrier_attributes;
    check_cuda_error(cudaPointerGetAttributes(&comm_buffer_attributes, param_.peer_comm_buffer_ptrs[rank_]));
    check_cuda_error(cudaPointerGetAttributes(&barrier_attributes, param_.peer_barrier_ptrs[rank_]));
    if (comm_buffer_attributes.type == 2) {
        check_cuda_error(cudaFree(param_.peer_comm_buffer_ptrs[rank_]));
    }
    if (barrier_attributes.type == 2) {
        check_cuda_error(cudaFree(param_.peer_barrier_ptrs[rank_]));
    }
}

template<typename T>
void CustomAllReduceComm<T>::customAllReduce(size_t elts, cudaStream_t stream)
{
    param_.elts_total   = elts;
    param_.barrier_flag = FLAG(param_.barrier_flag + 1);

    invokeOneOrTwoShotAllReduceKernel<T>(param_, stream);

    // swap back
Chen Xin's avatar
Chen Xin committed
54
    output_tensor_->at(0).data = (void*)tmp_tensor_data_;
Li Zhang's avatar
Li Zhang committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
}

template<typename T>
void CustomAllReduceComm<T>::allocateAndExchangePeerAccessPointer(
    std::vector<std::shared_ptr<AbstractCustomComm>>* custom_all_reduce_comms)
{
    assert(custom_all_reduce_comms->size() == rank_size_);
    assert(rank_ == 0);
    // Enable Peer to Peer Access
    enableP2P(rank_size_);
    for (size_t i = 0; i < rank_size_; i++) {
        check_cuda_error(cudaSetDevice(i));
        check_cuda_error(cudaMalloc(&(param_.peer_comm_buffer_ptrs[i]), CUSTOM_AR_SIZE_THRESHOLD));
        check_cuda_error(
            cudaMalloc(&(param_.peer_barrier_ptrs[i]), rank_size_ * (MAX_ALL_REDUCE_BLOCKS + 1) * sizeof(uint32_t)));
        check_cuda_error(
            cudaMemset(param_.peer_barrier_ptrs[i], 0, rank_size_ * (MAX_ALL_REDUCE_BLOCKS + 1) * sizeof(uint32_t)));
        T*        current_peer_comm_buffer_ptr = param_.peer_comm_buffer_ptrs[i];
        uint32_t* current_peer_barrier_ptr     = param_.peer_barrier_ptrs[i];
        // Assume current comm allocates device memory on all ranks (rank_ == 0)
        for (size_t j = 1; j < rank_size_; j++) {
            static_cast<CustomAllReduceComm<T>*>(custom_all_reduce_comms->at(j).get())
                ->param_.peer_comm_buffer_ptrs[i] = current_peer_comm_buffer_ptr;
            static_cast<CustomAllReduceComm<T>*>(custom_all_reduce_comms->at(j).get())->param_.peer_barrier_ptrs[i] =
                current_peer_barrier_ptr;
        }
    }

    // Set default local_output_buffer_ptr to local peer_comm_buffer_ptrs
    for (size_t i = 0; i < rank_size_; i++) {
        static_cast<CustomAllReduceComm<T>*>(custom_all_reduce_comms->at(i).get())->param_.local_output_buffer_ptr =
            static_cast<CustomAllReduceComm<T>*>(custom_all_reduce_comms->at(i).get())->param_.peer_comm_buffer_ptrs[i];
    }
}

template<typename T>
void CustomAllReduceComm<T>::enableP2P(int ngpus)
{
    int peer_access_available = 0;
    for (int i = 0; i < ngpus; i++) {
        cudaSetDevice(i);
        for (int j = 0; j < ngpus; j++) {
            if (i == j) {
                continue;
            }
            cudaDeviceCanAccessPeer(&peer_access_available, i, j);
            // Custom AR Kernels need DGX A100 NVSWITCH connections
            assert(peer_access_available);
            cudaDeviceEnablePeerAccess(j, 0);
        }
    }
}

template<typename T>
bool CustomAllReduceComm<T>::swapInternalBuffer(std::vector<Tensor>* tensor_buffer, size_t elts)
{
    // Check if all reduce elts meet the requirement of custom kernels
    // If meet, then swap the local comm buffer ptr with output tensor data pointer (avoid additional
    // memory movement)
    if (rank_size_ > 1 && elts * sizeof(T) <= CUSTOM_AR_SIZE_THRESHOLD) {
        tmp_tensor_data_               = (T*)(tensor_buffer->at(0).data);
        output_tensor_                 = tensor_buffer;
Chen Xin's avatar
Chen Xin committed
117
        tensor_buffer->at(0).data      = (void*)param_.peer_comm_buffer_ptrs[rank_];
Li Zhang's avatar
Li Zhang committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        param_.local_output_buffer_ptr = tmp_tensor_data_;
        return true;
    }
    return false;
}

template<typename T>
void initCustomAllReduceComm(std::vector<std::shared_ptr<AbstractCustomComm>>* custom_all_reduce_comms,
                             int                                               enable_custom_all_reduce,
                             size_t                                            rank_size)
{
    if (enable_custom_all_reduce == 0) {
        // don't use custom all reduce kernels, fall back to NCCL
        for (size_t i = 0; i < rank_size; i++) {
            custom_all_reduce_comms->push_back(nullptr);
        }
        return;
    }

    if (rank_size != RANKS_PER_NODE) {
#ifdef BUILD_MULTI_GPU
        if (rank_size > 1) {
lvhan028's avatar
lvhan028 committed
140
            TM_LOG_WARNING("Custom All Reduce only supports 8 Ranks currently. Using NCCL as Comm.");
Li Zhang's avatar
Li Zhang committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        }
#else
        FT_CHECK_WITH_INFO(rank_size == 1,
                           fmtstr("Custom All Reduce only supports 8 Ranks currently, got rank_size %ld. FT needs "
                                  "the NCCL library to communicate among devices but has built without NCCL. "
                                  "Please use the flag -DBUILD_MULTI_GPU=ON when compiling.",
                                  rank_size));
#endif
        for (size_t i = 0; i < rank_size; i++) {
            custom_all_reduce_comms->push_back(nullptr);
        }
        return;
    }

zhouxiang's avatar
zhouxiang committed
155
156
157
158
159
160
// #if defined(CUDART_VERSION) && CUDART_VERSION >= 11020
//     for (size_t i = 0; i < rank_size; i++) {
//         custom_all_reduce_comms->push_back(std::make_shared<CustomAllReduceComm<T>>(rank_size, i));
//     }
//     custom_all_reduce_comms->at(0)->allocateAndExchangePeerAccessPointer(custom_all_reduce_comms);
// #else
lvhan028's avatar
lvhan028 committed
161
    TM_LOG_WARNING("Custom All Reduce is not supported before CUDA 11.2. Using NCCL as Comm.");
Li Zhang's avatar
Li Zhang committed
162
163
164
    for (size_t i = 0; i < rank_size; i++) {
        custom_all_reduce_comms->push_back(nullptr);
    }
zhouxiang's avatar
zhouxiang committed
165
// #endif
Li Zhang's avatar
Li Zhang committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
}

// Template instantiation
template class CustomAllReduceComm<uint16_t>;
#ifdef ENABLE_BF16
template class CustomAllReduceComm<__nv_bfloat16>;
#endif
template class CustomAllReduceComm<uint32_t>;
template void
initCustomAllReduceComm<uint16_t>(std::vector<std::shared_ptr<AbstractCustomComm>>* custom_all_reduce_comms,
                                  int                                               enable_custom_all_reduce,
                                  size_t                                            rank_size);
#ifdef ENABLE_BF16
template void
initCustomAllReduceComm<__nv_bfloat16>(std::vector<std::shared_ptr<AbstractCustomComm>>* custom_all_reduce_comms,
                                       int                                               enable_custom_all_reduce,
                                       size_t                                            rank_size);
#endif
template void
initCustomAllReduceComm<uint32_t>(std::vector<std::shared_ptr<AbstractCustomComm>>* custom_all_reduce_comms,
                                  int                                               enable_custom_all_reduce,
                                  size_t                                            rank_size);

lvhan028's avatar
lvhan028 committed
189
}  // namespace turbomind