profile_restful_api.py 9.59 KB
Newer Older
1
import csv
AllentDan's avatar
AllentDan committed
2
3
4
import json
import random
import time
5
6
from queue import Queue
from threading import Thread
7
from typing import List, Tuple
AllentDan's avatar
AllentDan committed
8
9
10

import fire
import numpy as np
11
from tqdm import tqdm
AllentDan's avatar
AllentDan committed
12

13
from lmdeploy.serve.openai.api_client import APIClient
14
from lmdeploy.tokenizer import Tokenizer
AllentDan's avatar
AllentDan committed
15
16


17
18
19
20
21
22
def sample_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: Tokenizer,
) -> List[Tuple[str, int, int]]:
    # Load the dataset.
AllentDan's avatar
AllentDan committed
23
24
    with open(dataset_path) as f:
        dataset = json.load(f)
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    # Filter out the conversations with less than 2 turns.
    dataset = [data for data in dataset if len(data['conversations']) >= 2]
    # Only keep the first two turns of each conversation.
    dataset = [(data['conversations'][0]['value'],
                data['conversations'][1]['value']) for data in dataset]

    # Tokenize the prompts and completions.
    prompts = [prompt for prompt, _ in dataset]
    prompt_token_ids = tokenizer(prompts).input_ids
    completions = [completion for _, completion in dataset]
    completion_token_ids = tokenizer(completions).input_ids
    tokenized_dataset = []
    for i in range(len(dataset)):
        output_len = len(completion_token_ids[i])
        tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))

    # Filter out too long sequences.
    filtered_dataset: List[Tuple[str, int, int]] = []
    for prompt, prompt_token_ids, output_len in tokenized_dataset:
        prompt_len = len(prompt_token_ids)
        if prompt_len < 4 or output_len < 4:
            # Prune too short sequences.
AllentDan's avatar
AllentDan committed
47
            continue
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        if prompt_len > 1024 or prompt_len + output_len > 2048:
            # Prune too long sequences.
            continue
        filtered_dataset.append((prompt, prompt_len, output_len))

    # Sample the requests.
    sampled_requests = random.sample(filtered_dataset, num_requests)
    return sampled_requests


class Engine:

    def __init__(self,
                 server_addr: str,
                 tokenzier_path: str,
                 temperature: float = 0.8,
                 top_p: float = 1.0,
                 csv: str = '',
                 **kwargs):
        self.tokenizer = Tokenizer(tokenzier_path)
        self.server_addr = server_addr
        self.temperature = temperature
        self.top_p = top_p
        self.csv = csv
        client = APIClient(self.server_addr)
        self.model_name = client.available_models[0]
        self.pbar = None

    def _inference(self, req_queue: Queue, res_queue: Queue, session_id: int,
                   stream_output: bool):

        stats = []
        client = APIClient(self.server_addr)

        for prompt, input_seqlen, output_seqlen in iter(
                req_queue.get, [None, None, None]):
            timestamps = []
            timestamps.append(time.perf_counter())
            for output in client.chat_completions_v1(
                    model=self.model_name,
                    messages=prompt,
                    temperature=self.temperature,
                    top_p=self.top_p,
                    n=1,
                    max_tokens=output_seqlen,
                    stream=stream_output,
                    session_id=session_id,
                    ignore_eos=True):
                timestamps.append(time.perf_counter())

            first_token_latency = np.round(timestamps[1] - timestamps[0], 3)
            token_latency = np.round(timestamps[-1] - timestamps[0], 3)
            # assert output.pop('finish_reason') == 'length', \
            #     f'Error. session_id({session_id}) request {output_seqlen} ' \
            #     f'tokens, but `finish_reason` is not `length`'
            total_tokens = input_seqlen + output_seqlen
            stats.append([
                first_token_latency, output_seqlen, output_seqlen,
                total_tokens, token_latency
            ])
            self.pbar.update(1)

        res_queue.put((session_id, stats))

    def process_request(self,
                        requests,
                        concurrency: int = 1,
                        stream_output: bool = False):
        res_queue = Queue()
        req_queue = Queue()
        threads = []

        self.pbar = tqdm(total=len(requests))

        # feed request to q
        for req in requests:
            req_queue.put(req)
        for i in range(concurrency):
            req_queue.put([None, None, None])

        start = time.time()

        # start threads
        for i in range(concurrency):
            t = Thread(target=self._inference,
                       args=(req_queue, res_queue, i, stream_output))
            t.start()
            threads.append(t)

        # wait for finish
        for t in threads:
            t.join()

        elapsed_time = time.time() - start

        stats = []
        while not res_queue.empty():
            session_id, _stats = res_queue.get()
            # print(f'\n{"-" * 50}\n'
            #       f'session {session_id} stats: \n{_stats}\n{"-" * 50}\n')
            stats.append(np.array(_stats))

        stats = np.concatenate(stats).reshape(-1, 5)

        first_token_latency_min = np.min(stats[:, 0], axis=0)
        first_token_latency_max = np.max(stats[:, 0], axis=0)
        first_token_latency_ave = np.mean(stats[:, 0], axis=0)
        completion_tokens = np.sum(stats[:, 1], axis=0)
        request_output_tokens = np.sum(stats[:, 2], axis=0)
        total_tokens = np.sum(stats[:, 3], axis=0)
        prompt_tokens = total_tokens - completion_tokens
        completion_token_throughput = completion_tokens / elapsed_time
        total_token_throughput = total_tokens / elapsed_time
161
162
        rps = len(requests) / elapsed_time
        rpm = rps * 60
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

        if (np.abs(stats[:, 1] - stats[:, 2]) <= 1).min() is False:
            print(f'Did not generate requested number of tokens. '
                  f'Request {request_output_tokens:.0f}, '
                  f'but got {completion_tokens:.0f}')

        print(f'\n{"-" * 50}\nconcurrency: {concurrency}\n'
              f'elapsed_time: {elapsed_time:.3f}s\n')
        if stream_output:
            print(f'first_token latency(min, max, ave): '
                  f'{first_token_latency_min:.3f}s, '
                  f'{first_token_latency_max:.3f}s, '
                  f'{first_token_latency_ave:.3f}s\n')
        print(
            f'number of prompt tokens: {prompt_tokens:.0f}\n'
            f'number of completion tokens: {completion_tokens:.0f}\n'
            f'token throughput (completion token): {completion_token_throughput:.3f} token/s\n'  # noqa
            f'token throughput (prompt + completion token): {total_token_throughput:.3f} token/s\n'  # noqa
181
182
            f'RPS (request per second): {rps:.3f} req/s\n'
            f'RPM (request per minute): {rpm:.3f} req/min\n'
183
184
185
186
187
188
189
190
191
192
            f'{"-" * 50}\n')

        if self.csv:
            with open(self.csv, 'w') as csvfile:
                writer = csv.writer(csvfile)
                writer.writerow([
                    'batch', 'num_prompts', 'prompt_tokens',
                    'completion_tokens', '1st_token_latency(min)(s)',
                    '1st_token_latency(max)(s)', '1st_token_latency(ave)(s)',
                    'output token thr(tokens/s', 'total token thr(token/s)',
193
                    'RPS', 'RPM'
194
195
196
197
198
199
200
201
                ])
                writer.writerow([
                    concurrency,
                    len(requests), prompt_tokens, completion_tokens,
                    f'{first_token_latency_min:.3f}' if stream_output else '-',
                    f'{first_token_latency_max:.3f}' if stream_output else '-',
                    f'{first_token_latency_ave:.3f}' if stream_output else '-',
                    f'{completion_token_throughput:.3f}',
202
                    f'{total_token_throughput:.3f}', f'{rps:.3f}', f'{rpm:.3f}'
203
                ])
AllentDan's avatar
AllentDan committed
204
205
206
207


def main(server_addr: str,
         tokenizer_path: str,
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
         dataset: str,
         concurrency: int = 64,
         num_prompts: int = 2000,
         top_p: float = 1.0,
         temperature: float = 1.0,
         stream_output: bool = False,
         csv: str = './profile_api_server.csv',
         seed: int = 0):
    """Benchmark the request througput of api server.

    Args:
        server_addr (str): http url of api_server with format http://0.0.0.0:0
        tokenizer_path (str): Path to the tokenizer model in localhost
        dataset (str): Path to the dataset
        concurrency (int, optional): Number of working threads to process the sampled prompts.
            Defaults to 64.
        num_prompts (int, optional): Number of prompts to process. Defaults to 2000.
        top_p (float, optional): the set of most probable tokens with
            probabilities that add up to top_p or higher
            are kept for generation. Defaults to 1.0.
        temperature (float, optional): The value used to modulate the next token probabilities.
            Defaults to 1.0.
        stream_output (bool, optional): Indicator for streaming output. Defaults to False.
        csv (str, optional): The path to save the result.
        seed (int, optional): Seed used in sampling prompts from dataset. Defaults to 0.
    """    # noqa
    if not server_addr.startswith('http://'):
        print(f'[WARNING] server_addr of the api_server should '
              f'start with "http://", but got "{server_addr}"')
        server_addr = 'http://' + server_addr.strip()

    random.seed(seed)

    engine = Engine(server_addr,
                    tokenizer_path,
                    top_p=top_p,
                    temperature=temperature,
                    csv=csv)

    requests = sample_requests(dataset, num_prompts, engine.tokenizer)

    engine.process_request(requests, concurrency, stream_output)
AllentDan's avatar
AllentDan committed
250
251
252
253


if __name__ == '__main__':
    fire.Fire(main)