profile_serving.py 9.82 KB
Newer Older
1
import csv
lvhan028's avatar
lvhan028 committed
2
3
4
import json
import random
import time
5
6
7
from queue import Queue
from threading import Thread
from typing import List, Tuple
lvhan028's avatar
lvhan028 committed
8
9
10

import fire
import numpy as np
11
from tqdm import tqdm
lvhan028's avatar
lvhan028 committed
12

13
from lmdeploy.serve.turbomind.chatbot import Chatbot
14
from lmdeploy.tokenizer import Tokenizer
lvhan028's avatar
lvhan028 committed
15
16


17
18
19
20
21
22
23
24
25
26
27
28
29
30
def sample_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: Tokenizer,
) -> List[Tuple[str, int, int]]:
    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
    # Filter out the conversations with less than 2 turns.
    dataset = [data for data in dataset if len(data['conversations']) >= 2]
    # Only keep the first two turns of each conversation.
    dataset = [(data['conversations'][0]['value'],
                data['conversations'][1]['value']) for data in dataset]

zhouxiang's avatar
zhouxiang committed
31
32
33
    # pre-sample to avoid go through all the dataset
    dataset = random.sample(dataset, max(int(num_requests * 1.2), 1000))

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    # Tokenize the prompts and completions.
    prompts = [prompt for prompt, _ in dataset]
    prompt_token_ids = tokenizer(prompts).input_ids
    completions = [completion for _, completion in dataset]
    completion_token_ids = tokenizer(completions).input_ids
    tokenized_dataset = []
    for i in range(len(dataset)):
        output_len = len(completion_token_ids[i])
        tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))

    # Filter out too long sequences.
    filtered_dataset: List[Tuple[str, int, int]] = []
    for prompt, prompt_token_ids, output_len in tokenized_dataset:
        prompt_len = len(prompt_token_ids)
        if prompt_len < 4 or output_len < 4:
            # Prune too short sequences.
            continue
        if prompt_len > 1024 or prompt_len + output_len > 2048:
            # Prune too long sequences.
            continue
        filtered_dataset.append((prompt, prompt_len, output_len))

    # Sample the requests.
    sampled_requests = random.sample(filtered_dataset, num_requests)
    return sampled_requests


class Engine:

    def __init__(self,
                 server_addr: str,
                 tokenzier_path: str,
                 temperature: float = 0.8,
                 top_k: int = 1,
                 top_p: float = 1.0,
                 csv: str = '',
                 log_level: str = 'ERROR',
                 **kwargs):
        self.server_addr = server_addr
        self.tokenizer = Tokenizer(tokenzier_path)
        self.temperature = temperature
        self.top_k = top_k
        self.top_p = top_p
        self.csv = csv
        self.log_level = log_level
        self.pbar = None

    def _inference(self, req_queue: Queue, res_queue: Queue, session_id: int,
                   stream_output: bool):

        chatbot = Chatbot(self.server_addr,
                          ignore_eos=True,
                          top_k=self.top_k,
                          top_p=self.top_p,
                          temperature=self.temperature,
                          log_level=self.log_level)
        stats = []
        for prompt, input_seqlen, output_seqlen in iter(
                req_queue.get, [None, None, None]):
            timestamps = []
            tokens = []
lvhan028's avatar
lvhan028 committed
95
            timestamps.append(time.perf_counter())
96
            for _, _, n_token in chatbot.stream_infer(
lvhan028's avatar
lvhan028 committed
97
                    session_id,
98
                    prompt,
lvhan028's avatar
lvhan028 committed
99
100
101
                    request_output_len=output_seqlen,
                    sequence_start=True,
                    sequence_end=True):
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
                timestamps.append(time.perf_counter())
                tokens.append(n_token)
            first_token_latency = np.round(timestamps[1] - timestamps[0], 3)
            token_latency = np.round(timestamps[-1] - timestamps[0], 3)
            completion_tokens = tokens[-1]
            assert output_seqlen <= completion_tokens <= output_seqlen + 1, \
                f'Error. session_id({session_id}) request {output_seqlen} ' \
                f'tokens, but generate {completion_tokens} tokens.\n' \
                f'prompt: {prompt}'
            total_tokens = tokens[-1] + input_seqlen
            stats.append([
                first_token_latency, completion_tokens, output_seqlen,
                total_tokens, token_latency
            ])
            self.pbar.update(1)
        res_queue.put((session_id, stats))

    def process_request(self,
                        requests,
                        concurrency: int = 1,
                        stream_output: bool = True):
        res_queue = Queue()
        req_queue = Queue()
        threads = []
lvhan028's avatar
lvhan028 committed
126

127
        self.pbar = tqdm(total=len(requests))
lvhan028's avatar
lvhan028 committed
128

129
130
131
132
133
        # feed request to q
        for req in requests:
            req_queue.put(req)
        for i in range(concurrency):
            req_queue.put([None, None, None])
lvhan028's avatar
lvhan028 committed
134

135
        start = time.time()
lvhan028's avatar
lvhan028 committed
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        # start threads
        for i in range(concurrency):
            t = Thread(target=self._inference,
                       args=(req_queue, res_queue, i, stream_output))
            t.start()
            threads.append(t)

        # wait for finish
        for t in threads:
            t.join()

        elapsed_time = time.time() - start

        stats = []
        while not res_queue.empty():
            session_id, _stats = res_queue.get()
            # print(f'\n{"-" * 50}\n'
            #       f'session {session_id} stats: \n{_stats}\n{"-" * 50}\n')
zhouxiang's avatar
zhouxiang committed
155
156
            if len(_stats) != 0:
                stats.append(np.array(_stats))
157
158
159
160
161
162
163
164
165
166
167
168

        stats = np.concatenate(stats).reshape(-1, 5)

        first_token_latency_min = np.min(stats[:, 0], axis=0)
        first_token_latency_max = np.max(stats[:, 0], axis=0)
        first_token_latency_ave = np.mean(stats[:, 0], axis=0)
        completion_tokens = np.sum(stats[:, 1], axis=0)
        request_output_tokens = np.sum(stats[:, 2], axis=0)
        total_tokens = np.sum(stats[:, 3], axis=0)
        prompt_tokens = total_tokens - completion_tokens
        completion_token_throughput = completion_tokens / elapsed_time
        total_token_throughput = total_tokens / elapsed_time
169
170
        rps = len(requests) / elapsed_time
        rpm = rps * 60
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

        if (np.abs(stats[:, 1] - stats[:, 2]) <= 1).min() is False:
            print(f'Did not generate requested number of tokens. '
                  f'Request {request_output_tokens:.0f}, '
                  f'but got {completion_tokens:.0f}')

        print(f'\n{"-" * 50}\nconcurrency: {concurrency}\n'
              f'elapsed_time: {elapsed_time:.3f}s\n')
        if stream_output:
            print(f'first_token latency(min, max, ave): '
                  f'{first_token_latency_min:.3f}s, '
                  f'{first_token_latency_max:.3f}s, '
                  f'{first_token_latency_ave:.3f}s\n')
        print(
            f'number of prompt tokens: {prompt_tokens:.0f}\n'
            f'number of completion tokens: {completion_tokens:.0f}\n'
            f'token throughput (completion token): {completion_token_throughput:.3f} token/s\n'  # noqa
            f'token throughput (prompt + completion token): {total_token_throughput:.3f} token/s\n'  # noqa
189
190
            f'RPS (request per second): {rps:.3f} req/s\n'
            f'RPM (request per minute): {rpm:.3f} req/min\n'
191
192
193
194
195
196
            f'{"-" * 50}\n')

        if self.csv:
            with open(self.csv, 'w') as csvfile:
                writer = csv.writer(csvfile)
                writer.writerow([
197
198
199
                    'batch', 'num_prompts', 'RPS', 'RPM', 'FTL(ave)(s)',
                    'FTL(min)(s)', 'FTL(max)(s)', 'throughput(out tok/s)',
                    'throughput(total tok/s)'
200
201
202
                ])
                writer.writerow([
                    concurrency,
203
204
                    len(requests), f'{rps:.3f}', f'{rpm:.3f}',
                    f'{first_token_latency_ave:.3f}' if stream_output else '-',
205
206
207
                    f'{first_token_latency_min:.3f}' if stream_output else '-',
                    f'{first_token_latency_max:.3f}' if stream_output else '-',
                    f'{completion_token_throughput:.3f}',
208
                    f'{total_token_throughput:.3f}'
209
210
211
212
                ])


def main(server_addr: str,
lvhan028's avatar
lvhan028 committed
213
         tokenizer_path: str,
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
         dataset: str,
         concurrency: int = 32,
         num_prompts: int = 1000,
         top_k: int = 1,
         top_p: float = 1.0,
         temperature: float = 1.0,
         stream_output: bool = True,
         csv: str = './profile_tis.csv',
         seed: int = 0):
    """Benchmark the request througput of the triton inference server.

    Args:
        server_addr (str): Address of the triton inference server with format 0.0.0.0:0
        tokenizer_path (str): Path to the tokenizer model in localhost
        dataset (str): Path to the dataset
        concurrency (int, optional): Number of working threads to process the sampled prompts.
            Defaults to 32.
        num_prompts (int, optional): Number of prompts to process. Defaults to 1000.
        top_k (int, optional): The number of highest probability vocabulary tokens
            to keep for top-k-filtering. Defaults to 1.
        top_p (float, optional): the set of most probable tokens with
            probabilities that add up to top_p or higher
            are kept for generation. Defaults to 1.0.
        temperature (float, optional): The value used to modulate the next token probabilities.
            Defaults to 1.0.
        stream_output (bool, optional): Indicator for streaming output. Defaults to True.
        seed (int, optional): Seed used in sampling prompts from dataset. Defaults to 0.
    """    # noqa

    random.seed(seed)

    engine = Engine(server_addr,
                    tokenizer_path,
                    top_k=top_k,
                    top_p=top_p,
                    temperature=temperature,
                    log_level='ERROR',
                    csv=csv)

    requests = sample_requests(dataset, num_prompts, engine.tokenizer)

    engine.process_request(requests, concurrency, stream_output)
256

lvhan028's avatar
lvhan028 committed
257
258
259

if __name__ == '__main__':
    fire.Fire(main)