LlamaWeight.cc 4 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2019-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

Li Zhang's avatar
Li Zhang committed
18
// Modified from
lvhan028's avatar
lvhan028 committed
19
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/turbomind/models/multi_gpu_gpt/ParallelGptWeight.cc
Li Zhang's avatar
Li Zhang committed
20

lvhan028's avatar
lvhan028 committed
21
#include "src/turbomind/models/llama/LlamaWeight.h"
Li Zhang's avatar
Li Zhang committed
22

lvhan028's avatar
lvhan028 committed
23
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
24
25

template<typename T>
26
27
28
LlamaWeight<T>::LlamaWeight(size_t     head_num,
                            size_t     kv_head_num,
                            size_t     size_per_head,
Li Zhang's avatar
Li Zhang committed
29
30
31
                            size_t     inter_size,
                            size_t     vocab_size,
                            size_t     num_layer,
Li Zhang's avatar
Li Zhang committed
32
                            bool       attn_bias,
33
34
                            WeightType weight_type,
                            int        group_size,
Li Zhang's avatar
Li Zhang committed
35
                            size_t     tensor_para_size,
36
                            size_t     tensor_para_rank):
37
    hidden_units_(head_num * size_per_head),
Li Zhang's avatar
Li Zhang committed
38
39
40
41
42
    inter_size_(inter_size),
    vocab_size_(vocab_size),
    num_layer_(num_layer),
    weight_type_(weight_type),
    tensor_para_size_(tensor_para_size),
43
    tensor_para_rank_(tensor_para_rank)
Li Zhang's avatar
Li Zhang committed
44
45
46
{
    decoder_layer_weights.reserve(num_layer_);
    for (unsigned l = 0; l < num_layer_; ++l) {
47
48
49
50
51
        decoder_layer_weights.push_back(new LlamaDecoderLayerWeight<T>(head_num,
                                                                       kv_head_num,
                                                                       size_per_head,
                                                                       inter_size_,
                                                                       weight_type_,
52
                                                                       group_size,
53
54
55
                                                                       attn_bias,
                                                                       tensor_para_size_,
                                                                       tensor_para_rank_));
Li Zhang's avatar
Li Zhang committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    }

    mallocWeights();
}

template<typename T>
LlamaWeight<T>::~LlamaWeight()
{
    cudaFree((void*)pre_decoder_embedding_table);
    cudaFree((void*)output_norm_weight);
    cudaFree((void*)post_decoder_embedding_kernel);

    pre_decoder_embedding_table   = nullptr;
    post_decoder_embedding_kernel = nullptr;
}

template<typename T>
void LlamaWeight<T>::mallocWeights()
{
    deviceMalloc((T**)&pre_decoder_embedding_table, vocab_size_ * hidden_units_);
    deviceMalloc((T**)&output_norm_weight, hidden_units_);
    deviceMalloc((T**)&post_decoder_embedding_kernel, hidden_units_ * vocab_size_);
}

template<typename T>
void LlamaWeight<T>::loadModel(std::string dir_path)
{
    FtCudaDataType model_file_type = FtCudaDataType::FP16;
    dir_path += '/';

    loadWeightFromBin((T*)pre_decoder_embedding_table,
                      {vocab_size_ * hidden_units_},
                      dir_path + "tok_embeddings.weight",
                      model_file_type);

    loadWeightFromBin((T*)output_norm_weight, {hidden_units_}, dir_path + "norm.weight", model_file_type);

    loadWeightFromBin(
        (T*)post_decoder_embedding_kernel, {hidden_units_ * vocab_size_}, dir_path + "output.weight", model_file_type);

    for (unsigned layer = 0; layer < num_layer_; ++layer) {
        decoder_layer_weights[layer]->loadModel(dir_path + "layers." + std::to_string(layer), model_file_type);
    }
}

template struct LlamaWeight<float>;
template struct LlamaWeight<half>;

lvhan028's avatar
lvhan028 committed
104
}  // namespace turbomind