turbomind.py 13.7 KB
Newer Older
q.yao's avatar
q.yao committed
1
# Copyright (c) OpenMMLab. All rights reserved.
AllentDan's avatar
AllentDan committed
2
import asyncio
q.yao's avatar
q.yao committed
3
import os.path as osp
4
import sys
q.yao's avatar
q.yao committed
5
6
from configparser import ConfigParser
from contextlib import contextmanager
q.yao's avatar
q.yao committed
7
8
from queue import Queue
from threading import Thread
9
10
from typing import Iterable, List

q.yao's avatar
q.yao committed
11
import numpy as np
12
import torch
q.yao's avatar
q.yao committed
13
14
from torch.nn.utils.rnn import pad_sequence

15
import lmdeploy
16
from lmdeploy.model import MODELS
17
from lmdeploy.utils import get_logger
18

q.yao's avatar
q.yao committed
19
20
21
# TODO: find another way import _turbomind
lmdeploy_dir = osp.split(lmdeploy.__file__)[0]
sys.path.append(osp.join(lmdeploy_dir, 'lib'))
22
import _turbomind as _tm  # noqa: E402
q.yao's avatar
q.yao committed
23
24
25


def _stop_words(stop_words: List[int]):
lvhan028's avatar
lvhan028 committed
26
    """return list of stop-words to numpy.ndarray."""
q.yao's avatar
q.yao committed
27
28
29
    if stop_words is None:
        return None
    assert isinstance(stop_words, List) and \
30
31
32
           all(isinstance(elem, int) for elem in stop_words), \
           f'stop_words must be a list but got {type(stop_words)}'

q.yao's avatar
q.yao committed
33
34
35
36
37
38
39
40
41
    # each id in stop_words represents a stop word
    # refer to https://github.com/fauxpilot/fauxpilot/discussions/165 for
    # detailed explanation about fastertransformer's stop_words
    stop_word_offsets = range(1, len(stop_words) + 1)
    stop_words = np.array([[stop_words, stop_word_offsets]]).astype(np.int32)
    return stop_words


def _np_dict_to_tm_dict(np_dict: dict):
lvhan028's avatar
lvhan028 committed
42
    """map numpy.ndarray to turbomind's tensor."""
q.yao's avatar
q.yao committed
43
44
45
46
47
48
49
50
    ret = _tm.TensorMap()
    for k, v in np_dict.items():
        ret[k] = _tm.from_dlpack(v)

    return ret


def _tm_dict_to_torch_dict(tm_dict: _tm.TensorMap):
lvhan028's avatar
lvhan028 committed
51
    """map turbomind's tensor to torch's tensor."""
q.yao's avatar
q.yao committed
52
53
54
55
56
57
58
59
60
    ret = dict()
    for k, v in tm_dict.items():
        if v.type == _tm.DataType.TYPE_UINT32:
            v = v.view(_tm.DataType.TYPE_INT32)
        ret[k] = torch.from_dlpack(v)

    return ret


q.yao's avatar
q.yao committed
61
62
63
64
65
66
67
68
@contextmanager
def cuda_ctx(device_id):
    old_device = torch.cuda.current_device()
    torch.cuda.set_device(device_id)
    yield
    torch.cuda.set_device(old_device)


q.yao's avatar
q.yao committed
69
class TurboMind:
lvhan028's avatar
lvhan028 committed
70
71
72
73
74
    """LMDeploy's inference engine.

    Args:
        model_path (str): the path of turbomind's model
        eos_id (int): eos token id
75
        tp (int): tensor parallel
lvhan028's avatar
lvhan028 committed
76
    """
q.yao's avatar
q.yao committed
77

78
    def __init__(self, model_path: str, eos_id: int = 2, tp: int = 1):
q.yao's avatar
q.yao committed
79
80
        self.eos_id = eos_id

q.yao's avatar
q.yao committed
81
82
83
84
85
        # TODO: support mpi
        node_id = 0
        node_num = 1

        # read meta from model path
86
        self.gpu_count = tp
q.yao's avatar
q.yao committed
87
        self.session_len = 2048
88
        data_type = 'fp16'
q.yao's avatar
q.yao committed
89
90
91
92
93
94
95
96
97
98
99
        ini_path = osp.join(model_path, 'triton_models/weights/config.ini')
        with open(ini_path, 'r') as f:
            parser = ConfigParser()
            parser.read_file(f)
            section_name = ''
            if 'turbomind' in parser:
                section_name = 'turbomind'
            elif 'llama' in parser:
                section_name = 'llama'

            if len(section_name) > 0:
100
                tp_cfg = parser.getint(section_name, 'tensor_para_size')
q.yao's avatar
q.yao committed
101
                self.session_len = parser.getint(section_name, 'session_len')
102
103
104
105
                if tp_cfg != 1 and tp_cfg != tp:
                    get_logger('turbomind').info(
                        f'found tp={tp_cfg} in config.ini.')
                    self.gpu_count = tp_cfg
106
            self.model_name = parser.get(section_name, 'model_name')
107
            data_type = parser.get(section_name, 'weight_type')
108
109
        model = MODELS.get(self.model_name)()
        self.stop_words = _stop_words(model.stop_words)
q.yao's avatar
q.yao committed
110
111

        # params
q.yao's avatar
q.yao committed
112
113
114
115
        self.node_id = node_id
        self.node_num = node_num
        self.world_size = self.node_num * self.gpu_count

q.yao's avatar
q.yao committed
116
        # create model
q.yao's avatar
q.yao committed
117
118
119
120
        weight_dir = osp.join(model_path, 'triton_models', 'weights')
        model = _tm.AbstractTransformerModel.create_llama_model(
            weight_dir, tensor_para_size=self.gpu_count, data_type=data_type)
        self.model = model
q.yao's avatar
q.yao committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        self.nccl_params = model.create_nccl_params(self.node_id)
        torch.cuda.synchronize()

        # create weight
        def _create_weight(device_id):
            with cuda_ctx(device_id):
                rank = self.node_id * self.gpu_count + device_id
                model.create_shared_weights(device_id, rank)

        threads = []
        for device_id in range(self.gpu_count):
            t = Thread(target=_create_weight, args=(device_id, ))
            t.start()
            threads.append(t)
        for t in threads:
            t.join()

q.yao's avatar
q.yao committed
138
    def create_instance(self, cuda_stream_id=0):
lvhan028's avatar
lvhan028 committed
139
140
141
142
143
144
145
        """Create a turbomind instance.

        Args:
            cuda_stream_id(int): identity of a cuda stream
        Returns:
            TurboMindInstance: an instance of turbomind
        """
q.yao's avatar
q.yao committed
146
        return TurboMindInstance(self, cuda_stream_id)
q.yao's avatar
q.yao committed
147
148
149


class TurboMindInstance:
lvhan028's avatar
lvhan028 committed
150
151
152
153
154
155
    """Instance of TurboMind.

    Args:
        tm_model (str): turbomind's model path
        cuda_stream_id(int): identity of a cuda stream
    """
q.yao's avatar
q.yao committed
156

q.yao's avatar
q.yao committed
157
    def __init__(self, tm_model, cuda_stream_id=0):
q.yao's avatar
q.yao committed
158
        self.tm_model = tm_model
q.yao's avatar
q.yao committed
159
160
161
162
        self.cuda_stream_id = cuda_stream_id

        self.node_id = tm_model.node_id
        self.gpu_count = tm_model.gpu_count
q.yao's avatar
q.yao committed
163
164
165
166
167

        self.stop_words = tm_model.stop_words
        self.eos_id = tm_model.eos_id
        self.session_len = tm_model.session_len

q.yao's avatar
q.yao committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        self.nccl_params = tm_model.nccl_params
        self.instance_comm = tm_model.model.create_instance_comm(
            self.gpu_count)

        # create model instances
        model_insts = [None] * self.gpu_count
        threads = []
        for device_id in range(self.gpu_count):
            t = Thread(target=self._create_model_instance,
                       args=(device_id, model_insts))
            t.start()
            threads.append(t)
        for t in threads:
            t.join()

        self.model_insts = model_insts
q.yao's avatar
q.yao committed
184
        self.que = Queue()
q.yao's avatar
q.yao committed
185
186
187
188
189
190
191
192
        self.threads = [None] * self.gpu_count

    def _create_model_instance(self, device_id, model_insts):
        with cuda_ctx(device_id):
            rank = self.node_id * self.gpu_count + device_id
            model_inst = self.tm_model.model.create_model_instance(
                device_id, rank, self.cuda_stream_id, self.nccl_params)
            model_insts[device_id] = model_inst
q.yao's avatar
q.yao committed
193
194
195
196
197
198

    def _forward_callback(self, result, ctx):
        self.que.put((False, result))

    def _forward_thread(self, inputs):

q.yao's avatar
q.yao committed
199
200
201
202
203
204
        def _func(device_id, enque_output):
            with cuda_ctx(device_id):
                output = self.model_insts[device_id].forward(
                    inputs, self.instance_comm)
                if enque_output:
                    self.que.put((True, output))
q.yao's avatar
q.yao committed
205

q.yao's avatar
q.yao committed
206
207
208
209
        for device_id in range(self.gpu_count):
            t = Thread(target=_func, args=(device_id, device_id == 0))
            t.start()
            self.threads[device_id] = t
q.yao's avatar
q.yao committed
210

AllentDan's avatar
AllentDan committed
211
212
213
214
215
216
217
    async def async_stream_infer(self, *args, **kwargs):
        """Async wrapper of self.stream_infer."""
        for output in self.stream_infer(*args, **kwargs):
            # Allow the pipeline add new requests into the queue.
            await asyncio.sleep(0)
            yield output

q.yao's avatar
q.yao committed
218
219
220
221
222
223
224
225
226
227
228
    def stream_infer(self,
                     session_id,
                     input_ids,
                     request_output_len: int = 512,
                     sequence_start: bool = True,
                     sequence_end: bool = False,
                     step=1,
                     stop=False,
                     top_p=0.8,
                     top_k=40,
                     temperature=0.8,
229
                     repetition_penalty=1.0,
q.yao's avatar
q.yao committed
230
                     ignore_eos=False,
q.yao's avatar
q.yao committed
231
232
                     random_seed=None,
                     stream_output=False):
lvhan028's avatar
lvhan028 committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        """Perform model inference.

        Args:
            session_id (int): the id of a session
            input_ids (numpy.ndarray): the token ids of a prompt
            request_output_len (int): the max number of to-be-generated tokens
            sequence_start (bool): indicator for starting a sequence
            sequence_end (bool): indicator for ending a sequence
            step (int): the offset of the k/v cache
            stop (bool): indicator for cancelling the session
            top_p (float): If set to float < 1, only the smallest set of most
              probable tokens with probabilities that add up to top_p or higher
            are kept for generation.
            top_k (int): The number of the highest probability vocabulary
              tokens to keep for top-k-filtering
            temperature (float): to modulate the next token probability
            repetition_penalty (float): The parameter for repetition penalty.
              1.0 means no penalty
            ignore_eos (bool): indicator for ignoring eos
            random_seed (int): seed used by sampling
            stream_output (bool): indicator for stream output
        """
q.yao's avatar
q.yao committed
255
        if stream_output:
q.yao's avatar
q.yao committed
256
            self.model_insts[0].register_callback(self._forward_callback)
q.yao's avatar
q.yao committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

        if len(input_ids) == 0:
            input_ids = []
        if isinstance(input_ids[0], int):
            input_ids = [input_ids]

        batch_size = len(input_ids)

        def _broadcast_np(data, dtype, shape=(batch_size, )):
            if isinstance(data, Iterable):
                assert len(data) == batch_size
                return data

            return np.full(shape, data, dtype=dtype)

        input_ids = [torch.IntTensor(ids) for ids in input_ids]
        input_lengths = torch.IntTensor([len(ids) for ids in input_ids])
274
275
276
        input_ids = pad_sequence(input_ids,
                                 batch_first=True,
                                 padding_value=self.eos_id)
q.yao's avatar
q.yao committed
277
278
279
280
281

        if isinstance(session_id, int):
            session_id = [session_id]
        assert len(session_id) == batch_size

q.yao's avatar
q.yao committed
282
283
        step = _broadcast_np(step, np.int32)

q.yao's avatar
q.yao committed
284
285
286
        inputs = dict(
            input_ids=input_ids,
            input_lengths=input_lengths,
287
288
289
            request_output_len=np.full(input_lengths.shape,
                                       request_output_len,
                                       dtype=np.uint32),
q.yao's avatar
q.yao committed
290
291
292
293
            runtime_top_k=_broadcast_np(top_k, np.uint32),
            runtime_top_p=_broadcast_np(top_p, np.float32),
            temperature=_broadcast_np(temperature, np.float32),
            repetition_penalty=_broadcast_np(repetition_penalty, np.float32),
q.yao's avatar
q.yao committed
294
            step=step,
q.yao's avatar
q.yao committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

            # session input
            session_len=self.session_len *
            np.ones([
                batch_size,
            ], dtype=np.uint32),
            START=_broadcast_np((1 if sequence_start else 0), np.int32),
            END=_broadcast_np((1 if sequence_end else 0), np.int32),
            CORRID=np.array(session_id, dtype=np.uint64),
            STOP=_broadcast_np((1 if stop else 0), np.int32))

        if ignore_eos:
            stop_words = None
            bad_words = torch.tensor([[[self.eos_id], [1]]], dtype=torch.int32)
        else:
            stop_words = self.stop_words
            bad_words = None

        if stop_words is not None:
            inputs['stop_words_list'] = stop_words
        if bad_words is not None:
            inputs['bad_words_list'] = bad_words

        if random_seed is not None:
            inputs['random_seed'] = _broadcast_np(random_seed, np.uint64)
        tm_inputs = _np_dict_to_tm_dict(inputs)

q.yao's avatar
q.yao committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
        # start forward thread
        self._forward_thread(tm_inputs)

        seq_start = input_lengths + input_lengths.new_tensor(step)

        # generator
        while True:
            while self.que.qsize() > 1:
                self.que.get()

            finish, tm_outputs = self.que.get()

            outputs = _tm_dict_to_torch_dict(tm_outputs)

            output_ids = outputs['output_ids'][:, 0, :]
            sequence_length = outputs['sequence_length'].long()[:, 0].cpu()
            output_ids = [
                output_id[s:l] for output_id, s, l in zip(
                    output_ids, seq_start, sequence_length)
            ]
            sequence_length -= seq_start.to(sequence_length.device)
            yield [(output, l.item())
                   for output, l in zip(output_ids, sequence_length)]

            if finish:
q.yao's avatar
q.yao committed
347
348
                for t in self.threads:
                    t.join()
q.yao's avatar
q.yao committed
349
350
351
                while self.que.qsize() > 0:
                    self.que.get()
                break
q.yao's avatar
q.yao committed
352

q.yao's avatar
q.yao committed
353
        if stream_output:
q.yao's avatar
q.yao committed
354
            self.model_insts[0].unregister_callback()
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

    def decode(self, input_ids):
        """Perform context decode on input tokens.

        Args:
            input_ids (numpy.ndarray): the batch of input token ids
        """

        if len(input_ids) == 0:
            input_ids = []
        if isinstance(input_ids[0], int):
            input_ids = [input_ids]

        # append an extra token since input_len-1 tokens will be
        # decoded by context decoder
        for inputs in input_ids:
            inputs.append(0)

        batch_size = len(input_ids)

        def _broadcast_np(data, dtype, shape=(batch_size, )):
            if isinstance(data, Iterable):
                assert len(data) == batch_size
                return data

            return np.full(shape, data, dtype=dtype)

        input_ids = [torch.IntTensor(ids) for ids in input_ids]
        input_lengths = torch.IntTensor([len(ids) for ids in input_ids])
        input_ids = pad_sequence(input_ids,
                                 batch_first=True,
                                 padding_value=self.eos_id)

        inputs = dict(input_ids=input_ids,
                      input_lengths=input_lengths,
                      request_output_len=_broadcast_np(0, dtype=np.uint32),
                      is_return_logits=_broadcast_np(1, np.uint32))

        tm_inputs = _np_dict_to_tm_dict(inputs)

        # start forward thread
        self._forward_thread(tm_inputs)

        _, tm_outputs = self.que.get()

        outputs = _tm_dict_to_torch_dict(tm_outputs)
        logits = outputs['logits']

        return logits[:, :-1, :]