LlamaTritonModel.h 5.16 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2021-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

Li Zhang's avatar
Li Zhang committed
18
19
// Modified from
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/triton_backend/multi_gpu_gpt/ParallelGptTritonModel.h
Li Zhang's avatar
Li Zhang committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

#pragma once

#include "src/fastertransformer/models/llama/LlamaV2.h"
#include "src/fastertransformer/triton_backend/llama/LlamaTritonModelInstance.h"
#include "src/fastertransformer/triton_backend/transformer_triton_backend.hpp"
#include "src/fastertransformer/utils/cuda_utils.h"
#include "src/fastertransformer/utils/custom_ar_comm.h"
#include "src/fastertransformer/utils/nccl_utils.h"
#include <cuda_fp16.h>
#include <mutex>

namespace ft = fastertransformer;

template<typename T>
struct LlamaTritonSharedModelInstance;

template<typename T>
struct LlamaTritonModel: public AbstractTransformerModel {
    LlamaTritonModel(size_t      tensor_para_size,
                     size_t      pipeline_para_size,
                     int         enable_custom_all_reduce,
                     std::string model_dir);

    ~LlamaTritonModel() = default;

    std::unique_ptr<AbstractTransformerModelInstance>
    createModelInstance(int                                                               deviceId,
                        int                                                               rank,
                        cudaStream_t                                                      stream,
                        std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>> nccl_params,
                        std::shared_ptr<ft::AbstractCustomComm> custom_all_reduce_comm = nullptr) override;

    void createSharedWeights(int deviceId, int rank) override;

    void createCustomComms(std::vector<std::shared_ptr<ft::AbstractCustomComm>>* custom_all_reduce_comms,
                           int                                                   world_size) override;

    std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>>
    createNcclParams(const int node_id, const int device_id_start, const bool multi_node) override;

    std::unique_ptr<ft::AbstractInstanceComm> createInstanceComm(int size) override;

    void handleMissingParams();

    std::string toString() override;
    int         getTensorParaSize() override;
    int         getPipelineParaSize() override;

private:
    std::unique_ptr<LlamaTritonSharedModelInstance<T>>
    createSharedModelInstance(int                                                               deviceId,
                              int                                                               rank,
                              std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>> nccl_params,
                              std::shared_ptr<ft::AbstractCustomComm> custom_all_reduce_comm = nullptr);

    size_t         head_num_;
    size_t         size_per_head_;
    size_t         inter_size_;
    size_t         num_layer_;
    size_t         vocab_size_;
    size_t         rotary_embedding_dim_;
    float          norm_eps_;
    int            max_batch_size_;
    int            max_context_token_num_;
    int            session_len_;
    int            step_length_;
    int            start_id_;
    int            end_id_;
    int            cache_max_entry_count_;
    int            cache_chunk_size_;
    int            use_context_fmha_;
    size_t         tensor_para_size_;
    size_t         pipeline_para_size_;
    ft::WeightType weight_type_;
Li Zhang's avatar
Li Zhang committed
95
    bool           attn_bias_;
96
    int            quant_policy_;
Li Zhang's avatar
Li Zhang committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

    size_t prefix_cache_len_{};

    // shared weights for each device
    std::vector<std::shared_ptr<ft::LlamaWeight<T>>> shared_weights_;

    std::shared_ptr<typename ft::LlamaV2<T>::SharedState> shared_state_;

    // weak_ptr is used so that the instances get released when all strong references are gone
    std::vector<std::weak_ptr<LlamaTritonSharedModelInstance<T>>> shared_instances_;
    std::deque<std::mutex>                                        shared_mutexes_;  // is locking really needed?

    // // residual type
    // bool use_gptj_residual_ = true;

    // // number of tasks (for prefix-prompt, p/prompt-tuning)
    // size_t                                     num_tasks_                  = 0;
    // int                                        prompt_learning_start_id_   = 0;
    // ft::PromptLearningType                     prompt_learning_type_       = ft::PromptLearningType::no_prompt;
    // std::map<std::string, std::pair<int, int>> prompt_learning_table_pair_ = {};

    bool is_fp16_;
    int  enable_custom_all_reduce_ = 0;

    std::string model_name_;
    std::string model_dir_;
};