llama_kernels.cu 25.6 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
// Copyright (c) OpenMMLab. All rights reserved.

#include "src/fastertransformer/kernels/reduce_kernel_utils.cuh"
#include "src/fastertransformer/models/llama/llama_kernels.h"
5
#include "src/fastertransformer/models/llama/llama_utils.h"
Li Zhang's avatar
Li Zhang committed
6
#include "src/fastertransformer/utils/cuda_type_utils.cuh"
7
#include "src/fastertransformer/kernels/decoder_masked_multihead_attention_utils.h"
Li Zhang's avatar
Li Zhang committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

namespace fastertransformer {

// fp16, bf16
// n is divided by 2 for this impl
template<typename T>
__global__ void rootMeanSquareNorm(T* out, const T* input, const T* scale, float eps, int m, int n)
{
    using T2 = typename TypeConverter<T>::Type;
    __shared__ float s_inv_mean;
    float            mean = 0.f;

    T2*       out_ptr   = (T2*)out;
    const T2* input_ptr = (const T2*)input;
    const T2* scale_ptr = (const T2*)scale;

    for (uint idx = threadIdx.x; idx < n; idx += blockDim.x) {
        float2 tmp2 = cuda_cast<float2>(input_ptr[blockIdx.x * n + idx]);
        mean += tmp2.x * tmp2.x;
        mean += tmp2.y * tmp2.y;
    }

    mean = blockReduceSum<float>(mean);
    if (threadIdx.x == 0) {
        s_inv_mean = rsqrt(.5f * mean / (float)n + eps);
    }
    __syncthreads();

    for (uint idx = threadIdx.x; idx < n; idx += blockDim.x) {
        float2 tmp2                   = cuda_cast<float2>(input_ptr[blockIdx.x * n + idx]);
        float2 sca2                   = cuda_cast<float2>(scale_ptr[idx]);
        tmp2.x                        = tmp2.x * s_inv_mean * sca2.x;
        tmp2.y                        = tmp2.y * s_inv_mean * sca2.y;
        out_ptr[blockIdx.x * n + idx] = cuda_cast<T2>(tmp2);
    }
}

template<>
__global__ void rootMeanSquareNorm(float* out, const float* input, const float* scale, float eps, int m, int n)
{
    __shared__ float s_inv_mean;
    float            mean = 0.f;

    for (uint idx = threadIdx.x; idx < n; idx += blockDim.x) {
        float tmp = input[blockIdx.x * n + idx];
        mean += tmp * tmp;
    }

    mean = blockReduceSum<float>(mean);
    if (threadIdx.x == 0) {
        s_inv_mean = rsqrt(mean / static_cast<float>(n) + eps);
    }
    __syncthreads();

    for (uint idx = threadIdx.x; idx < n; idx += blockDim.x) {
        float tmp                 = input[blockIdx.x * n + idx];
        out[blockIdx.x * n + idx] = tmp * s_inv_mean * scale[idx];
    }
}

template<typename T>
void invokeRootMeanSquareNorm(T* out, const T* input, const T* scale, float eps, int m, int n, cudaStream_t stream)
{
    if (sizeof(T) == 2) {
        FT_CHECK(n % 2 == 0);
        n /= 2;
    }
    dim3 grid(m);
    dim3 block(std::min(n, 1024));
    rootMeanSquareNorm<<<grid, block, 0, stream>>>(out, input, scale, eps, m, n);
}

template void invokeRootMeanSquareNorm(float*, const float*, const float*, float, int, int, cudaStream_t);
template void invokeRootMeanSquareNorm(half*, const half*, const half*, float, int, int, cudaStream_t);

// #ifdef ENABLE_BF16

// template void invokeRootMeanSquareNorm(__nv_bfloat16*, const __nv_bfloat16*, float, int, int, cudaStream_t);

// #endif

template<typename T, typename T0>
__device__ T saturate_cast(T0 x)
{
    return x;
}

template<>
__device__ half saturate_cast<half, float>(float x)
{
    return (x > 64512.f || x < -64512.f) ? (x > 0.f ? 64512.f : -64512.f) : x;
}

template<typename T>
__global__ void addResidual(T* out, const T* in, size_t n)
{
    auto idx = threadIdx.x + (size_t)blockIdx.x * blockDim.x;
    if (idx < n) {
        out[idx] = static_cast<T>(static_cast<float>(out[idx]) + static_cast<float>(in[idx]));
    }
}

template<typename T>
void invokeAddResidual(T* out, const T* in, int m, int n, cudaStream_t stream)
{
    auto total = static_cast<size_t>(m) * n;
    dim3 block(std::min(total, 1024UL));
    dim3 grid((total + block.x - 1) / block.x);

    addResidual<<<grid, block, 0, stream>>>(out, in, total);
}

template void invokeAddResidual(float*, const float*, int, int, cudaStream_t);
template void invokeAddResidual(half*, const half*, int, int, cudaStream_t);

// ids [seq_len, batch_size]
// input_ids [batch_size, max_input_len]
__global__ void
fixInputIds(int* ids, const int* input_ids, const int* input_lengths, int batch_size, int seq_len, int max_input_len)
{
    int seq_id   = threadIdx.x;
    int batch_id = blockIdx.x;
    for (; seq_id < input_lengths[batch_id]; seq_id += blockDim.x) {
        ids[seq_id * batch_size + batch_id] = input_ids[batch_id * max_input_len + seq_id];
    }
}

void invokeFixInputIds(int*         ids,
                       const int*   input_ids,
                       const int*   input_lengths,
                       int          batch_size,
                       int          seq_len,
                       int          max_input_len,
                       cudaStream_t st)
{
    dim3 block(std::min(1024, max_input_len));
    dim3 grid(batch_size);
    fixInputIds<<<grid, block, 0, st>>>(ids, input_ids, input_lengths, batch_size, seq_len, max_input_len);
}

template<typename T>
__global__ void sliceCausalMask(T* mask, int seq_len, int key_len, int step)
{
    mask += (size_t)blockIdx.x * seq_len * key_len;
    for (int i = threadIdx.x; i < seq_len * key_len; i += blockDim.x) {
        int row = i / key_len;
        int col = i % key_len;
        if (col <= row + step) {
            mask[i] = static_cast<T>(1.f);
        }
        else {
            mask[i] = static_cast<T>(0.f);
        }
    }
}

// [step: step+Q, :] of the K*K causal mask
template<typename T>
void invokeSliceCausalMask(T* mask, int seq_len, int key_len, int step, int batch_size, cudaStream_t stream)
{
    FT_CHECK(step == key_len - seq_len);
    sliceCausalMask<<<batch_size, 256, 0, stream>>>(mask, seq_len, key_len, step);
}

template void invokeSliceCausalMask(half*, int, int, int, int, cudaStream_t);
template void invokeSliceCausalMask(float*, int, int, int, int, cudaStream_t);

// mask [bsz, max_q_len, max_k_len]

template<typename T>
__global__ void createCausalMasks(T* mask, const int* q_lens, const int* k_lens, int max_q_len, int max_k_len)
{
    const auto q_len = q_lens[blockIdx.x];
    const auto k_len = k_lens[blockIdx.x];
    mask += blockIdx.x * max_q_len * max_k_len;
    for (int i = threadIdx.x; i < max_q_len * max_k_len; i += blockDim.x) {
        const int q        = i / max_k_len;  // [0, max_q_len)
        const int k        = i % max_k_len;  // [0, max_k_len)
        bool      is_valid = q < q_len && k < k_len && k <= q + (k_len - q_len);
        mask[i]            = static_cast<T>(is_valid);
    }
}

template<typename T>
void invokeCreateCausalMasks(
    T* mask, const int* q_lens, const int* k_lens, int max_q_len, int max_k_len, int batch_size, cudaStream_t stream)
{
    createCausalMasks<<<batch_size, 512, 0, stream>>>(mask, q_lens, k_lens, max_q_len, max_k_len);
}

template void invokeCreateCausalMasks(float* mask, const int*, const int*, int, int, int, cudaStream_t);
template void invokeCreateCausalMasks(half* mask, const int*, const int*, int, int, int, cudaStream_t);

template<typename T>
__global__ void extend_key_cache(T**          k_dst,
                                 const size_t dst_offset,
                                 const T*     k_src,
                                 const int    head_num,
                                 const int    size_per_head,
                                 const int*   query_length,
                                 const int*   history_length,
                                 const int    max_q_len,
                                 const int    max_seq_len)
{
    const int     batch_id = blockIdx.y;
    const int     head_id  = blockIdx.z;
    constexpr int X_ELEMS  = (sizeof(T) == 4) ? 4 : 8;

    const int idx                 = blockIdx.x * blockDim.x + threadIdx.x;
    int       size_per_head_div_x = size_per_head / X_ELEMS;

    // x dim is now handled by uint4 type
    const auto key_src = reinterpret_cast<const uint4*>(k_src);
    const auto key_dst = reinterpret_cast<uint4*>(k_dst[batch_id] + dst_offset);

    const auto seq_len  = query_length[batch_id];
    const auto t_offset = history_length[batch_id];

    const int k_head_size_id = idx % size_per_head_div_x;
    const int k_seq_len_id   = idx / size_per_head_div_x;

    if (k_seq_len_id < seq_len) {
        // [B, H, s, D/x] -> [H, D/x, S[t:t+s]]

        const int64_t dst_idx = head_id * size_per_head_div_x * max_seq_len +  // H
                                k_head_size_id * max_seq_len +                 // D/x
                                t_offset + k_seq_len_id;                       // s + offset

        const int64_t src_idx = batch_id * head_num * size_per_head_div_x * max_q_len +  // B
                                head_id * size_per_head_div_x * max_q_len +              // H
                                k_seq_len_id * size_per_head_div_x +                     // s
                                k_head_size_id;                                          // D/x

        key_dst[dst_idx] = key_src[src_idx];
    }
}

template<typename T>
__global__ void extend_value_cache(T**          v_dst,
                                   const size_t dst_offset,
                                   const T*     v_src,
                                   const int    head_num,
                                   const int    size_per_head,
                                   const int*   query_length,
                                   const int*   history_length,
                                   const int    max_q_len,
                                   const int    max_seq_len)
{
    const int     batch_id = blockIdx.y;
    const int     head_id  = blockIdx.z;
    constexpr int X_ELEMS  = (sizeof(T) == 4) ? 4 : 8;

    const int idx                 = blockIdx.x * blockDim.x + threadIdx.x;
    int       size_per_head_div_x = size_per_head / X_ELEMS;

    // x dim is now handled by uint4 type
    const auto val_src = reinterpret_cast<const uint4*>(v_src);
    const auto val_dst = reinterpret_cast<uint4*>(v_dst[batch_id] + dst_offset);

    const auto seq_len  = query_length[batch_id];
    const auto t_offset = history_length[batch_id];

    const int v_head_size_id = idx % size_per_head_div_x;
    const int v_seq_len_id   = idx / size_per_head_div_x;

    if (v_seq_len_id < seq_len) {
        // [B, H, s, D/x] -> [H, S[t:t+s], D/x]
        const int64_t dst_idx = head_id * size_per_head_div_x * max_seq_len +      // H
                                (v_seq_len_id + t_offset) * size_per_head_div_x +  // s + offset
                                v_head_size_id;                                    // D/x

        const int64_t src_idx = batch_id * head_num * size_per_head_div_x * max_q_len +  // B
                                head_id * size_per_head_div_x * max_q_len +              // H
                                v_seq_len_id * size_per_head_div_x +                     // s
                                v_head_size_id;                                          // D/x

        val_dst[dst_idx] = val_src[src_idx];
    }
}

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
inline __device__ float2 float2div(float a, float2 b)
{
    float2 c;
    c.x = b.x / a;
    c.y = b.y / a;
    return c;
}

static inline __device__ half4 char4_scale_to_half4(char4 value, const float scale) {
  half4 dst;
  dst.x = __float2half(value.x * scale);
  dst.y = __float2half(value.y * scale);
  dst.z = __float2half(value.z * scale);
  dst.w = __float2half(value.w * scale);
  return dst;
}

static inline __device__ uint32_t float4_to_char4(float x,
                                                  float y,
                                                  float z,
                                                  float w) {
  uint32_t dst;
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 720
  uint32_t a; asm volatile("cvt.rni.sat.s32.f32 %0, %1;\n" : "=r"(a) : "f"(x));
  uint32_t b; asm volatile("cvt.rni.sat.s32.f32 %0, %1;\n" : "=r"(b) : "f"(y));
  uint32_t c; asm volatile("cvt.rni.sat.s32.f32 %0, %1;\n" : "=r"(c) : "f"(z));
  uint32_t d; asm volatile("cvt.rni.sat.s32.f32 %0, %1;\n" : "=r"(d) : "f"(w));

  asm volatile("cvt.pack.sat.s8.s32.b32 %0, %1, %2,  0;\n" : "=r"(dst) : "r"(d), "r"(c));
  asm volatile("cvt.pack.sat.s8.s32.b32 %0, %1, %2, %0;\n" : "+r"(dst) : "r"(b), "r"(a));
#else
  char4 tmp;
  tmp.x = x;
  tmp.y = y;
  tmp.z = z;
  tmp.w = w;
  dst = reinterpret_cast<const uint32_t&>(tmp);
#endif
  return dst;
}

template<typename T>
__global__ void extend_value_cache_int8(int8_t**     v_dst,
                                        const size_t dst_offset,
                                        const T*     v_src,
                                        const int    head_num,
                                        const int    size_per_head,
                                        const int*   query_length,
                                        const int*   history_length,
                                        const int    max_q_len,
                                        const int    max_seq_len,
                                        const float  v_scale)
{
    const int     batch_id = blockIdx.y;
    const int     head_id  = blockIdx.z;
    constexpr int X_ELEMS  = (sizeof(T) == 4) ? 4 : 8;

    const int idx                 = blockIdx.x * blockDim.x + threadIdx.x;
    int       size_per_head_div_x = size_per_head / X_ELEMS;

    // x dim is now handled by uint4 type
    const auto val_src = reinterpret_cast<const uint4*>(v_src);
    const auto val_dst = reinterpret_cast<uint2*>(v_dst[batch_id] + dst_offset);

    const auto seq_len  = query_length[batch_id];
    const auto t_offset = history_length[batch_id];

    const int v_head_size_id = idx % size_per_head_div_x;
    const int v_seq_len_id   = idx / size_per_head_div_x;

    if (v_seq_len_id < seq_len) {
        // [B, H, s, D/x] -> [H, S[t:t+s], D/x]
        const int64_t dst_idx = head_id * size_per_head_div_x * max_seq_len +      // H
                                (v_seq_len_id + t_offset) * size_per_head_div_x +  // s + offset
                                v_head_size_id;                                    // D/x

        const int64_t src_idx = batch_id * head_num * size_per_head_div_x * max_q_len +  // B
                                head_id * size_per_head_div_x * max_q_len +              // H
                                v_seq_len_id * size_per_head_div_x +                     // s
                                v_head_size_id;                                          // D/x

        // scale to int8 and write
        const auto value  = val_src[src_idx];
        auto       to_ptr = reinterpret_cast<uint32_t*>(val_dst + dst_idx);

        float2 float2_0 = float2div(v_scale, mmha::half2_to_float2(value.x));
        float2 float2_1 = float2div(v_scale, mmha::half2_to_float2(value.y));
        to_ptr[0]       = float4_to_char4(float2_0.x, float2_0.y, float2_1.x, float2_1.y);

        float2_0  = float2div(v_scale, mmha::half2_to_float2(value.z));
        float2_1  = float2div(v_scale, mmha::half2_to_float2(value.w));
        to_ptr[1] = float4_to_char4(float2_0.x, float2_0.y, float2_1.x, float2_1.y);
    }
}


Li Zhang's avatar
Li Zhang committed
384
385
386
387
388
389
390
391
392
393
394
395
396
template<typename T>
void invokeExtendKVCache(T**          k_dst,
                         T**          v_dst,
                         size_t       dst_offset,
                         const T*     k_src,
                         const T*     v_src,
                         int          local_batch_size,
                         const int*   query_length,
                         int          max_q_len,
                         const int*   history_length,
                         int          max_seq_len,
                         int          size_per_head,
                         int          local_head_num,
397
398
399
                         cudaStream_t stream,
                         int          quant,
                         const float* kv_scale)
Li Zhang's avatar
Li Zhang committed
400
401
402
403
404
405
{
    constexpr int block_sz = 128;
    constexpr int x        = (sizeof(T) == 4) ? 4 : 8;

    dim3 grid((max_q_len * size_per_head / x + block_sz - 1) / block_sz, local_batch_size, local_head_num);

406
407
408
409
410
411
412
413
414
415
    if (quant & QuantPolicy::kCacheKVInt8) {
        extend_value_cache_int8<<<grid, block_sz, 0, stream>>>(
            reinterpret_cast<int8_t**>(k_dst), dst_offset, k_src, local_head_num, size_per_head, query_length, history_length, max_q_len, max_seq_len, kv_scale[0]);

        extend_value_cache_int8<<<grid, block_sz, 0, stream>>>(
            reinterpret_cast<int8_t**>(v_dst), dst_offset, v_src, local_head_num, size_per_head, query_length, history_length, max_q_len, max_seq_len, kv_scale[1]);
    
    } else {
        extend_value_cache<<<grid, block_sz, 0, stream>>>(
            k_dst, dst_offset, k_src, local_head_num, size_per_head, query_length, history_length, max_q_len, max_seq_len);
Li Zhang's avatar
Li Zhang committed
416

417
418
419
        extend_value_cache<<<grid, block_sz, 0, stream>>>(
            v_dst, dst_offset, v_src, local_head_num, size_per_head, query_length, history_length, max_q_len, max_seq_len);
    }
Li Zhang's avatar
Li Zhang committed
420
421
422
423
424
425
426
427
428
429
430
431
432
433
}

template void invokeExtendKVCache(float**,
                                  float**,
                                  size_t,
                                  const float*,
                                  const float*,
                                  int,
                                  const int*,
                                  int,
                                  const int*,
                                  int,
                                  int,
                                  int,
434
435
436
                                  cudaStream_t stream,
                                  int,
                                  const float*);
Li Zhang's avatar
Li Zhang committed
437
438
439
440
441
442
443
444
445
446
447
448
449

template void invokeExtendKVCache(half**,
                                  half**,
                                  size_t,
                                  const half*,
                                  const half*,
                                  int,
                                  const int*,
                                  int,
                                  const int*,
                                  int,
                                  int,
                                  int,
450
451
452
                                  cudaStream_t stream,
                                  int,
                                  const float*);
Li Zhang's avatar
Li Zhang committed
453
454

template<typename T>
455
456
457
458
459
460
461
462
__global__ void transpose_value_cache(T*           v_dst,  //
                                      const T**    v_src,
                                      const size_t src_offset,
                                      const int    head_num,
                                      const int    size_per_head,
                                      const int*   seq_length,
                                      const int    max_kv_len,
                                      const int    max_seq_len)
Li Zhang's avatar
Li Zhang committed
463
464
465
466
467
468
469
470
471
{
    const int     batch_id = blockIdx.y;
    const int     head_id  = blockIdx.z;
    constexpr int X_ELEMS  = (sizeof(T) == 4) ? 4 : 8;

    const int idx                 = blockIdx.x * blockDim.x + threadIdx.x;
    int       size_per_head_div_x = size_per_head / X_ELEMS;

    // x dim is now handled by uint4 type
472
473
    const auto val_src = reinterpret_cast<const uint4*>(v_src[batch_id] + src_offset);
    const auto val_dst = reinterpret_cast<uint4*>(v_dst);
Li Zhang's avatar
Li Zhang committed
474
475
476

    const auto seq_len = seq_length[batch_id];

477
478
    const int v_head_size_id = idx % size_per_head_div_x;
    const int v_seq_len_id   = idx / size_per_head_div_x;
Li Zhang's avatar
Li Zhang committed
479

480
481
    if (v_seq_len_id < seq_len) {
        // [B, H, s, D/x] <- [B, H, S[:s], D/x]
Li Zhang's avatar
Li Zhang committed
482
        const int64_t src_idx = head_id * size_per_head_div_x * max_seq_len +  // H
483
484
                                v_seq_len_id * size_per_head_div_x +           // s
                                v_head_size_id;                                // D/x
Li Zhang's avatar
Li Zhang committed
485
486
487

        const int64_t dst_idx = batch_id * head_num * size_per_head_div_x * max_kv_len +  // B
                                head_id * size_per_head_div_x * max_kv_len +              // H
488
489
                                v_seq_len_id * size_per_head_div_x +                      // s
                                v_head_size_id;                                           // D/x
Li Zhang's avatar
Li Zhang committed
490

491
        val_dst[dst_idx] = val_src[src_idx];
Li Zhang's avatar
Li Zhang committed
492
493
494
    }
}

495

Li Zhang's avatar
Li Zhang committed
496
template<typename T>
497
498
__global__ void transpose_value_cache_int8(T*           v_dst,  //
                                      const int8_t**    v_src,
Li Zhang's avatar
Li Zhang committed
499
500
501
502
503
                                      const size_t src_offset,
                                      const int    head_num,
                                      const int    size_per_head,
                                      const int*   seq_length,
                                      const int    max_kv_len,
504
505
                                      const int    max_seq_len,
                                      const float  v_scale)
Li Zhang's avatar
Li Zhang committed
506
507
508
509
510
511
512
513
514
{
    const int     batch_id = blockIdx.y;
    const int     head_id  = blockIdx.z;
    constexpr int X_ELEMS  = (sizeof(T) == 4) ? 4 : 8;

    const int idx                 = blockIdx.x * blockDim.x + threadIdx.x;
    int       size_per_head_div_x = size_per_head / X_ELEMS;

    // x dim is now handled by uint4 type
515
    const auto val_src = reinterpret_cast<const uint2*>(v_src[batch_id] + src_offset);
Li Zhang's avatar
Li Zhang committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
    const auto val_dst = reinterpret_cast<uint4*>(v_dst);

    const auto seq_len = seq_length[batch_id];

    const int v_head_size_id = idx % size_per_head_div_x;
    const int v_seq_len_id   = idx / size_per_head_div_x;

    if (v_seq_len_id < seq_len) {
        // [B, H, s, D/x] <- [B, H, S[:s], D/x]
        const int64_t src_idx = head_id * size_per_head_div_x * max_seq_len +  // H
                                v_seq_len_id * size_per_head_div_x +           // s
                                v_head_size_id;                                // D/x

        const int64_t dst_idx = batch_id * head_num * size_per_head_div_x * max_kv_len +  // B
                                head_id * size_per_head_div_x * max_kv_len +              // H
                                v_seq_len_id * size_per_head_div_x +                      // s
                                v_head_size_id;                                           // D/x

534
535
536
537
538
539
        // int8x8 -> fp16x8
        const auto from_ptr = reinterpret_cast<const char4*>(val_src + src_idx);
        auto to_ptr = reinterpret_cast<half4*>(val_dst + dst_idx);

        to_ptr[0] = char4_scale_to_half4(from_ptr[0], v_scale);
        to_ptr[1] = char4_scale_to_half4(from_ptr[1], v_scale);
Li Zhang's avatar
Li Zhang committed
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
    }
}

template<typename T>
void invokeTransposeKVCache(T*           key_cache_trans,
                            T*           val_cache_trans,
                            const T**    key_cache,
                            const T**    val_cache,
                            size_t       src_offset,
                            int          batch_size,
                            const int*   key_length,
                            int          max_kv_len,
                            int          max_seq_len,
                            int          size_per_head,
                            int          head_num,
555
556
557
                            cudaStream_t stream,
                            int          quant,
                            const float* kv_scale)
Li Zhang's avatar
Li Zhang committed
558
559
560
561
562
563
{
    constexpr int block_sz = 128;
    constexpr int x        = (sizeof(T) == 4) ? 4 : 8;

    dim3 grid((max_kv_len * size_per_head / x + block_sz - 1) / block_sz, batch_size, head_num);

564
565
566
    if (quant & QuantPolicy::kCacheKVInt8) {
        transpose_value_cache_int8<<<grid, block_sz, 0, stream>>>(
            key_cache_trans, reinterpret_cast<const int8_t**>(key_cache), src_offset, head_num, size_per_head, key_length, max_kv_len, max_seq_len, kv_scale[0]);
Li Zhang's avatar
Li Zhang committed
567

568
569
570
571
572
573
574
575
576
577
        transpose_value_cache_int8<<<grid, block_sz, 0, stream>>>(
            val_cache_trans, reinterpret_cast<const int8_t**>(val_cache), src_offset, head_num, size_per_head, key_length, max_kv_len, max_seq_len, kv_scale[1]);
    
    } else {
        transpose_value_cache<<<grid, block_sz, 0, stream>>>(
            key_cache_trans, key_cache, src_offset, head_num, size_per_head, key_length, max_kv_len, max_seq_len);

        transpose_value_cache<<<grid, block_sz, 0, stream>>>(
            val_cache_trans, val_cache, src_offset, head_num, size_per_head, key_length, max_kv_len, max_seq_len);
    }
Li Zhang's avatar
Li Zhang committed
578
579
580
}

template void invokeTransposeKVCache(
581
    float*, float*, const float**, const float**, size_t, int, const int*, int, int, int, int, cudaStream_t stream, int, const float*);
Li Zhang's avatar
Li Zhang committed
582
template void invokeTransposeKVCache(
583
    half*, half*, const half**, const half**, size_t, int, const int*, int, int, int, int, cudaStream_t stream, int, const float*);
Li Zhang's avatar
Li Zhang committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

__global__ void gatherOutput(int*       output_ids,
                             const int* ids,
                             const int* context_length,
                             int        max_context_len,
                             int        max_gen_step,
                             int        max_output_len,
                             int        batch_size)
{
    const int batch_id    = blockIdx.x;
    const int context_len = context_length[batch_id];
    output_ids += batch_id * max_output_len;
    for (int src_idx = threadIdx.x; src_idx < max_gen_step; src_idx += blockDim.x) {
        // skip padding for src
        if (context_len <= src_idx && src_idx < max_context_len) {
            continue;
        }
        // skip padding for dst
        const int dst_idx   = src_idx < context_len ? src_idx : src_idx - (max_context_len - context_len);
        output_ids[dst_idx] = ids[src_idx * batch_size + batch_id];
    }
}

void invokeGatherOutput(int*         output_ids,
                        const int*   ids,
                        const int*   context_length,
                        int          max_context_len,
                        int          max_gen_step,
                        int          max_output_len,
                        int          batch_size,
                        cudaStream_t stream)
{
    int block_size = 512;
    int grid_size  = batch_size;
    gatherOutput<<<grid_size, block_size, 0, stream>>>(
        output_ids, ids, context_length, max_context_len, max_gen_step, max_output_len, batch_size);
}

}  // namespace fastertransformer