LlamaV2.cc 25.2 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/* 
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 * Copyright (c) 2021, NAVER Corp.  Authored by CLOVA.
 * Copyright (c) 2022, SK Telecom Authored by A. Dialog
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

 // Modified from https://github.com/NVIDIA/FasterTransformer/blob/main/src/fastertransformer/models/multi_gpu_gpt/ParallelGpt.cc

#include "src/fastertransformer/models/llama/LlamaV2.h"
#include "src/fastertransformer/kernels/decoding_kernels.h"
#include "src/fastertransformer/kernels/gpt_kernels.h"
#include "src/fastertransformer/models/llama/LlamaBatch.h"
#include "src/fastertransformer/models/llama/LlamaNcclGuard.h"
#include "src/fastertransformer/models/llama/LlamaWeight.h"
#include "src/fastertransformer/models/llama/Request.h"
#include "src/fastertransformer/models/llama/llama_utils.h"
#include "src/fastertransformer/utils/Tensor.h"
#include "src/fastertransformer/utils/cuda_utils.h"
#include <functional>
#include <memory>
#include <sstream>
#include <stdexcept>

namespace fastertransformer {

template<typename T>
LlamaV2<T>::LlamaV2(size_t                       head_num,
                    size_t                       size_per_head,
                    size_t                       inter_size,
                    size_t                       num_layer,
                    size_t                       vocab_size,
                    size_t                       rotary_embedding_dim,
                    float                        norm_eps,
                    int                          max_batch_size,
                    int                          max_context_token_num,
                    int                          session_len,
                    int                          step_length,
                    int                          start_id,
                    int                          end_id,
                    int                          cache_max_entry_count,
                    int                          cache_chunk_size,
55
                    int                          quant_policy,
Li Zhang's avatar
Li Zhang committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
                    bool                         use_context_fmha,
                    std::shared_ptr<SharedState> shared_state,
                    LlamaWeight<T>*              weights,
                    NcclParam                    tensor_para,
                    cudaStream_t                 stream,
                    cublasMMWrapper*             cublas_wrapper,
                    IAllocator*                  allocator,
                    bool                         is_free_buffer_after_forward,
                    cudaDeviceProp*              cuda_device_prop):
    head_num_(head_num),
    size_per_head_(size_per_head),
    inter_size_(inter_size),
    num_layer_(num_layer),
    vocab_size_(vocab_size),
    rotary_embedding_dim_(rotary_embedding_dim),
    rmsnorm_eps_(norm_eps),
    start_id_(start_id),
    end_id_(end_id),
    hidden_units_(head_num * size_per_head),
    local_head_num_(head_num / tensor_para.world_size_),
    weights_(weights),
    tensor_para_(tensor_para),
    stream_(stream),
    cublas_wrapper_(cublas_wrapper),
    allocator_(allocator),
    is_free_buffer_after_forward_(is_free_buffer_after_forward),
    cuda_device_prop_(cuda_device_prop),
    debug_(isDebug()),
    step_length_(step_length),
    batch_(max_batch_size, max_context_token_num, session_len, this),
    shared_state_(shared_state)

{
    FT_LOG_DEBUG(__PRETTY_FUNCTION__);
    FT_CHECK(vocab_size_ % tensor_para_.world_size_ == 0);
    FT_LOG_INFO("NCCL group_id = %d", tensor_para_.group_id_);

93
94
95
96
97
98
99
100
101
102
    size_t elem_bits = 0;
    if (quant_policy & QuantPolicy::kCacheKVInt8) {
        elem_bits = sizeof(int8_t) * 8;
        if (use_context_fmha) {
            FT_LOG_ERROR("use_context_fmha not support int8");
            assert(0);
        }
    } else {
        elem_bits = sizeof(T) * 8;
    }
Li Zhang's avatar
Li Zhang committed
103
104
105
106
    kv_cache_mgr_ = std::make_unique<LlamaCacheManager>(num_layer_,
                                                        local_head_num_,
                                                        size_per_head_,
                                                        session_len,
107
                                                        elem_bits,
Li Zhang's avatar
Li Zhang committed
108
109
110
111
                                                        cache_max_entry_count,
                                                        cache_chunk_size,
                                                        tensor_para.rank_,
                                                        allocator);
112
    initialize(use_context_fmha, quant_policy);
Li Zhang's avatar
Li Zhang committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    start();
}

template<typename T>
LlamaV2<T>::~LlamaV2()
{
    internal_thread_.join();

    delete decoder_;
    delete dynamic_decode_layer_;
    delete context_decoder_;
}

template<typename T>
127
void LlamaV2<T>::initialize(bool use_context_fmha, int quant_policy)
Li Zhang's avatar
Li Zhang committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
{
    FT_LOG_DEBUG(__PRETTY_FUNCTION__);

    context_decoder_ = new LlamaContextDecoder<T>(head_num_,
                                                  size_per_head_,
                                                  inter_size_,
                                                  num_layer_,
                                                  rotary_embedding_dim_,
                                                  rmsnorm_eps_,
                                                  tensor_para_,
                                                  stream_,
                                                  cublas_wrapper_,
                                                  allocator_,
                                                  is_free_buffer_after_forward_,
142
143
                                                  use_context_fmha,
                                                  quant_policy);
Li Zhang's avatar
Li Zhang committed
144
145
146
147
148
149
150
151
152
153
154

    decoder_ = new LlamaDecoder<T>(head_num_,
                                   size_per_head_,
                                   inter_size_,
                                   num_layer_,
                                   rotary_embedding_dim_,
                                   rmsnorm_eps_,
                                   tensor_para_,
                                   stream_,
                                   cublas_wrapper_,
                                   allocator_,
155
156
                                   is_free_buffer_after_forward_,
                                   quant_policy);
Li Zhang's avatar
Li Zhang committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595

    dynamic_decode_layer_ = new DynamicDecodeLayer<float>(vocab_size_,
                                                          vocab_size_,  // vocab_size_padded,
                                                          0,            // end_id, deprecated
                                                          stream_,
                                                          cublas_wrapper_,
                                                          allocator_,
                                                          is_free_buffer_after_forward_,
                                                          cuda_device_prop_);
}

template<typename T>
void LlamaV2<T>::embeddingLookup(T* embeddings, const int* token_ids_buf, int batch_size, int step)
{
    FT_LOG_DEBUG(__PRETTY_FUNCTION__);
    // ! This kernel can't be used in context decoding
    invokeEmbeddingLookupPosEncodingPadCount(embeddings,
                                             weights_->pre_decoder_embedding_table,
                                             static_cast<T*>(nullptr),  // position encoding
                                             token_ids_buf,
                                             static_cast<int*>(nullptr),  // padding count, not used w/o pos-code
                                             batch_size,
                                             hidden_units_,
                                             static_cast<T>(1.),  // scale
                                             step,                // step, used int index into output_ids_buf_
                                             batch_size,          // token_num
                                             0,                   // ite
                                             stream_);
    sync_check_cuda_error();
}

template<typename T>
void LlamaV2<T>::contextDecode(T*         deocder_output,
                               uintptr_t* k_cache_ptr,
                               uintptr_t* v_cache_ptr,
                               T*         context_decoder_input_buf,
                               T*         context_decoder_output_buf,
                               const int* input_ids,
                               const int* input_length,
                               const int* history_length,
                               const int* context_length,
                               size_t     token_num,
                               size_t     max_input_len,
                               size_t     max_context_len,
                               size_t     session_len,
                               size_t     batch_size)
{
    FT_LOG_DEBUG(__PRETTY_FUNCTION__);

    if (tensor_para_.rank_ == 0) {
        FT_LOG_INFO("context decoding start");
    }

    invokeInputIdsEmbeddingLookupPosEncoding(context_decoder_input_buf,
                                             nullptr,  // processed somewhere else
                                             weights_->pre_decoder_embedding_table,
                                             static_cast<T*>(nullptr),
                                             pPromptTuningParam<T>{},
                                             input_ids,
                                             0,  // only used for postion encoding
                                             token_num,
                                             token_num,
                                             1,
                                             hidden_units_,
                                             stream_);
    sync_check_cuda_error();

    const auto dtype = getTensorType<T>();
    const auto bsz   = batch_size;

    const int max_q_len   = max_input_len;
    const int max_kv_len  = max_context_len;
    const int max_seq_len = session_len;

    std::unordered_map<std::string, Tensor> decoder_input_tensors{
        {"decoder_input", {MEMORY_GPU, dtype, {token_num, hidden_units_}, context_decoder_input_buf}},
        {"output_norm_weight", {MEMORY_GPU, dtype, {hidden_units_}, weights_->output_norm_weight}},
        {"input_lengths", {MEMORY_GPU, TYPE_INT32, {bsz}, input_length}},
        {"history_lengths", {MEMORY_GPU, TYPE_INT32, {bsz}, history_length}},
        {"context_lengths", {MEMORY_GPU, TYPE_INT32, {bsz}, context_length}},
        {"max_q_len", {MEMORY_CPU, TYPE_INT32, {1}, &max_q_len}},
        {"max_kv_len", {MEMORY_CPU, TYPE_INT32, {1}, &max_kv_len}},
        {"max_seq_len", {MEMORY_CPU, TYPE_INT32, {1}, &max_seq_len}},
    };

    std::unordered_map<std::string, Tensor> decoder_output_tensors{
        {"decoder_output", {MEMORY_GPU, dtype, {bsz, max_input_len, hidden_units_}, context_decoder_output_buf}},
        {"key_cache", {MEMORY_GPU, TYPE_UINT64, {bsz}, k_cache_ptr}},
        {"value_cache", {MEMORY_GPU, TYPE_UINT64, {bsz}, v_cache_ptr}},
        {"last_token_hidden_units", {MEMORY_GPU, dtype, {bsz, hidden_units_}, deocder_output}}};

    context_decoder_->forward(&decoder_output_tensors, &decoder_input_tensors, &weights_->decoder_layer_weights);

    if (tensor_para_.rank_ == 0) {
        FT_LOG_INFO("context decoding end");
    }
}

template<typename T>
void LlamaV2<T>::decoderForward(T*         decoder_output,
                                uintptr_t* k_cache_ptr,
                                uintptr_t* v_cache_ptr,
                                T*         decoder_input,
                                const int* sequence_length,
                                const int* total_padding_count,
                                bool*      finished,
                                int        step,
                                int        ite,
                                size_t     session_len,
                                size_t     batch_size)
{
    FT_LOG_DEBUG(__PRETTY_FUNCTION__);

    const int  max_seq_len = session_len;
    const auto dtype       = getTensorType<T>();

    // max_input_length is not used w/o linear_bias_slopes
    // sequence_lengths_ will be incremented in dynamic decode
    std::unordered_map<std::string, Tensor> decoder_input_tensors{
        {"decoder_input", {MEMORY_GPU, dtype, {batch_size, hidden_units_}, decoder_input}},
        {"sequence_lengths", {MEMORY_GPU, TYPE_INT32, {batch_size}, sequence_length}},
        {"total_padding_tokens", {MEMORY_GPU, TYPE_INT32, {batch_size}, total_padding_count}},
        {"max_seq_len", {MEMORY_CPU, TYPE_INT32, {1}, &max_seq_len}},
        {"finished", {MEMORY_GPU, TYPE_BOOL, {batch_size}, finished}},
        {"output_norm_weight", {MEMORY_GPU, dtype, {hidden_units_}, weights_->output_norm_weight}},
        {"step", {MEMORY_CPU, TYPE_INT32, {1}, &step}},
        {"ite", {MEMORY_CPU, TYPE_INT32, {1}, &ite}},
    };

    // LOG(ERROR) << key_cache_ << " " << value_cache_;
    std::unordered_map<std::string, Tensor> decoder_output_tensors{
        {"decoder_output", {MEMORY_GPU, dtype, {batch_size, hidden_units_}, decoder_output}},
        {"key_cache", {MEMORY_GPU, TYPE_UINT64, {batch_size}, k_cache_ptr}},
        {"value_cache", {MEMORY_GPU, TYPE_UINT64, {batch_size}, v_cache_ptr}},
    };

    decoder_->forward(&decoder_output_tensors, &decoder_input_tensors, &weights_->decoder_layer_weights);
}

template<typename T>
void LlamaV2<T>::postDecodeEmbedding(float* logits, float* local_logits, const T* decoder_output, int batch_size)
{
    FT_LOG_DEBUG(__PRETTY_FUNCTION__);
    cudaDataType_t data_type = getCudaDataType<T>();
    float          alpha     = 1.f;
    float          beta      = 0.f;
    if (tensor_para_.world_size_ == 1) {
        cublas_wrapper_->Gemm(CUBLAS_OP_T,
                              CUBLAS_OP_N,
                              vocab_size_,  // n
                              batch_size,
                              hidden_units_,  // k
                              &alpha,
                              weights_->post_decoder_embedding_kernel,
                              data_type,
                              hidden_units_,  // k
                              decoder_output,
                              data_type,
                              hidden_units_,  // k
                              &beta,
                              logits,
                              CUDA_R_32F,
                              vocab_size_,  // n
                              CUDA_R_32F,
                              cublasGemmAlgo_t(-1));
    }
    else {
        FT_CHECK(vocab_size_ % tensor_para_.world_size_ == 0);
        const size_t local_vocab_size = vocab_size_ / tensor_para_.world_size_;
        cublas_wrapper_->Gemm(CUBLAS_OP_T,
                              CUBLAS_OP_N,
                              local_vocab_size,  // n
                              batch_size,
                              hidden_units_,  // k
                              &alpha,
                              weights_->post_decoder_embedding_kernel
                                  + tensor_para_.rank_ * local_vocab_size * hidden_units_,
                              data_type,
                              hidden_units_,  // k
                              decoder_output,
                              data_type,
                              hidden_units_,  // k
                              &beta,
                              local_logits + tensor_para_.rank_ * batch_size * local_vocab_size,
                              CUDA_R_32F,
                              local_vocab_size,  // n
                              CUDA_R_32F,
                              cublasGemmAlgo_t(-1));
        {
            NcclGuard nccl_guard(tensor_para_, stream_);
            ftNcclAllGather(local_logits,                   // send_buf
                            local_logits,                   // recv_buf
                            batch_size * local_vocab_size,  // data_size
                            tensor_para_.rank_,
                            tensor_para_,
                            stream_);
        }
        invokeTransposeAxis01(logits, local_logits, tensor_para_.world_size_, batch_size, local_vocab_size, stream_);
        sync_check_cuda_error();
    }
}

template<typename T>
void LlamaV2<T>::dynamicDecode(int*            token_ids,
                               bool*           finished,
                               int*            sequence_length,
                               bool*           should_stop,
                               TensorMap*      inputs,
                               TensorMap*      outputs,
                               const float*    logits,
                               const uint32_t* seq_limit_len,
                               const int*      context_length,
                               const int*      end_ids,
                               int             step,
                               int             ite,
                               size_t          max_context_len,
                               size_t          token_ids_len,
                               size_t          batch_size)
{
    FT_LOG_DEBUG(__PRETTY_FUNCTION__);
    int local_batch_size = (int)batch_size;

    std::unordered_map<std::string, Tensor> dynamic_decode_input_tensors{
        {"logits", {MEMORY_GPU, TYPE_FP32, {batch_size, (size_t)1, vocab_size_}, logits}},
        {"step", {MEMORY_CPU, TYPE_INT32, {1}, &step}},
        {"max_input_length", {MEMORY_CPU, TYPE_INT32, {1}, &max_context_len}},
        {"sequence_limit_length", {MEMORY_GPU, TYPE_UINT32, {batch_size}, seq_limit_len}},
        {"input_lengths", {MEMORY_GPU, TYPE_INT32, {batch_size, 1}, context_length}},
        {"ite", {MEMORY_CPU, TYPE_UINT32, {1}, &ite}},
        {"end_id", {MEMORY_GPU, TYPE_INT32, {batch_size}, end_ids}},
        {"local_batch_size", {MEMORY_CPU, TYPE_INT32, {1}, &local_batch_size}},
    };

    const std::vector<std::string> optional_inputs{"stop_words_list",
                                                   "bad_words_list",
                                                   "runtime_top_k",
                                                   "runtime_top_p",
                                                   "temperature",
                                                   "repetition_penalty",
                                                   "random_seed"};
    for (const auto& key : optional_inputs) {
        if (inputs->isExist(key)) {
            dynamic_decode_input_tensors.insert({key, inputs->at(key)});
        }
    }

    std::unordered_map<std::string, Tensor> dynamic_decode_output_tensors{
        {"output_ids", {MEMORY_GPU, TYPE_INT32, {token_ids_len, batch_size, 1U}, token_ids}},
        {"finished", {MEMORY_GPU, TYPE_BOOL, {batch_size}, finished}},
        {"sequence_length", {MEMORY_GPU, TYPE_INT32, {batch_size}, sequence_length}},
        {"should_stop", {MEMORY_CPU, TYPE_BOOL, {1}, should_stop}}};

    const std::vector<std::string> optional_outputs{"cum_log_probs", "output_log_probs"};
    for (const auto& key : optional_outputs) {
        if (outputs->isExist(key)) {
            dynamic_decode_output_tensors.insert({key, outputs->at(key)});
        }
    }

    dynamic_decode_layer_->forward(&dynamic_decode_output_tensors, &dynamic_decode_input_tensors);
}

template<typename T>
void LlamaV2<T>::internalThreadEntry(int device_id)
{
    FT_LOG_INFO("[internalThreadEntry] %d", (int)tensor_para_.rank_);
    check_cuda_error(cudaSetDevice(device_id));

    auto& request_queue  = shared_state_->request_queue;
    auto& infer_requests = shared_state_->infer_requests;
    auto& stop_requests  = shared_state_->stop_requests;

    while (1) {
        if (tensor_para_.rank_ == 0) {
            const int  free_slot_count = batch_.maxSize() - batch_.size() + batch_.finishedCount();
            const bool is_empty        = free_slot_count == batch_.maxSize();

            request_queue.dequeue(stop_requests, infer_requests, free_slot_count, is_empty);

            batch_.verifyRequests(stop_requests, infer_requests);
        }

        // wait while rank-0 is dequeueing
        shared_state_->barrier->wait();

        bool modified = false;

        if (!(batch_.finishedCount() == 0 && stop_requests.empty() && infer_requests.empty())) {
            batch_.handleStopRequests(stop_requests);
            batch_.synchronize();
            modified = true;
        }

        const int infer_request_count = infer_requests.size();

        if (!infer_requests.empty()) {
            batch_.initialize(infer_requests);  // reinitialize when new requests come, possible buffer allocation
            batch_.contextDecode();
            modified = true;
        }

        // wait while shared stop/infer_requests is being used
        shared_state_->barrier->wait();

        if (batch_.size()) {
            if (modified) {
                batch_.initializeGeneration();
                batch_.initializeSampling(infer_request_count);
            }
            for (int i = 0; i < step_length_; ++i) {
                if (!batch_.generate()) {
                    break;
                }
            }
            batch_.finish();
        }
    }

    FT_CHECK(0);
}

template<typename T>
void LlamaV2<T>::start()
{
    int device_id = -1;
    check_cuda_error(cudaGetDevice(&device_id));
    internal_thread_ = std::thread(&LlamaV2<T>::internalThreadEntry, this, device_id);
}

static inline Tensor slice(const Tensor& tensor, int index)
{
    auto shape = tensor.shape;
    if (shape.at(0) == 1) {
        return tensor;
    }
    shape[0]          = 1;
    const auto offset = std::accumulate(shape.begin(), shape.end(), (size_t)index, std::multiplies<>{});
    return tensor.slice(shape, offset);
}

// ! implicit conversion from `unordered_map` to `TensorMap` drops 0-sized tensors
static inline TensorMap slice(const std::unordered_map<std::string, Tensor>& src, int index)
{
    TensorMap dst;
    for (const auto& kv : src) {
        dst.insert({kv.first, slice(kv.second, index)});
    }
    return dst;
}

template<typename T>
void LlamaV2<T>::forward(std::unordered_map<std::string, Tensor>*       outputs,
                         const std::unordered_map<std::string, Tensor>* inputs,
                         Control                                        control)
{
    if (debug_) {
        if (tensor_para_.rank_ == 0) {
            for (const auto& kv : *inputs) {
                FT_LOG_INFO("[forward][rank=%d] INPUT: %s", (int)tensor_para_.rank_, format(kv).c_str());
            }
            for (const auto& kv : *outputs) {
                FT_LOG_INFO("[forward][rank=%d] OUTPUT: %s", (int)tensor_para_.rank_, format(kv).c_str());
            }
        }
    }

    const int batch_size = outputs->at("output_ids").shape[0];

    const auto rank = tensor_para_.rank_;

    std::vector<std::shared_ptr<Request>> requests(batch_size);

    // rank-0 allocates all requests for the batch
    if (rank == 0) {
        for (int i = 0; i < batch_size; ++i) {
            requests[i] = std::make_shared<Request>();
            requests[i]->inputs.resize(tensor_para_.world_size_);
            requests[i]->outputs.resize(tensor_para_.world_size_);
        }
        control.comm->setSharedObject(&requests);
    }

    control.comm->barrier();

    if (rank != 0) {
        requests = *(std::vector<std::shared_ptr<Request>>*)control.comm->getSharedObject();
    }

    for (int i = 0; i < batch_size; ++i) {
        auto& r = requests[i];

        r->inputs[rank]  = slice(*inputs, i);
        r->outputs[rank] = slice(*outputs, i);

        if (rank == 0) {
            r->id         = r->inputs[rank].getVal<uint64_t>("CORRID", i);
            r->start_flag = r->inputs[rank].getVal<int>("START", 1);
            r->end_flag   = r->inputs[rank].getVal<int>("END", 1);
            r->stop_flag  = r->inputs[rank].getVal<int>("STOP", 0);
            r->stream_cb  = control.callback;
        }
    }

    control.comm->barrier();

    // rank-0 now takes the ownership of `requests`
    // rank-0 submits the tasks and wait for finish
    std::vector<int> error_codes;
    bool             has_error = 0;
    if (rank == 0) {
        FT_LOG_INFO("[forward] Enqueue requests");
        auto futures = shared_state_->request_queue.enqueue(std::move(requests));

        FT_LOG_INFO("[forward] Wait for requests to complete ...");
        for (auto& f : futures) {
            auto ec = f.get();
            error_codes.push_back(ec);
            if (ec) {
                has_error = true;
            }
        }
    }

    // prevents request tensors being freed before the batch completes
    control.comm->barrier();

    if (rank == 0 && has_error) {
        std::stringstream ss;
        for (int i = 0; i < error_codes.size(); ++i) {
            ss << (i ? "" : " ") << error_codes[i];
        }
        throw std::runtime_error(ss.str());
    }
}

template class LlamaV2<half>;
template class LlamaV2<float>;

}  // namespace fastertransformer