"official/vision/beta/modeling/segmentation_model.py" did not exist on "cd39fd588a61a23be70bda355ac7fb483ba60e77"
minimal_client 4.3 KB
Newer Older
xiabo's avatar
xiabo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/env python
# Copyright 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#  * Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#  * Redistributions in binary form must reproduce the above copyright
#    notice, this list of conditions and the following disclaimer in the
#    documentation and/or other materials provided with the distribution.
#  * Neither the name of NVIDIA CORPORATION nor the names of its
#    contributors may be used to endorse or promote products derived
#    from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import argparse
import numpy as np

import tritonclient.http as httpclient
from tritonclient.utils import InferenceServerException

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('-u',
                        '--url',
                        type=str,
                        required=False,
                        default='localhost:8000',
                        help='Inference server URL. Default is localhost:8000.')
    FLAGS = parser.parse_args()

    # For the HTTP client, need to specify large enough concurrency to
    # issue all the inference requests to the server in parallel. For
    # this example we want to be able to send 2 requests concurrently.
    try:
        concurrent_request_count = 2
        triton_client = httpclient.InferenceServerClient(
            url=FLAGS.url, concurrency=concurrent_request_count)
    except Exception as e:
        print("channel creation failed: " + str(e))
        sys.exit(1)

    # First send a single request to the nonbatching model.
    print('=========')
    input0_data = np.array([ 1, 2, 3, 4 ], dtype=np.int32)
    print('Sending request to nonbatching model: IN0 = {}'.format(input0_data))

    inputs = [ httpclient.InferInput('IN0', [4], "INT32") ]
    inputs[0].set_data_from_numpy(input0_data)
    result = triton_client.infer('nonbatching', inputs)

    print('Response: {}'.format(result.get_response()))
    print('OUT0 = {}'.format(result.as_numpy('OUT0')))

    # Send 2 requests to the batching model. Because these are sent
    # asynchronously and Triton's dynamic batcher is configured to
    # delay up to 5 seconds when forming a batch for this model, we
    # expect these 2 requests to be batched within Triton and sent to
    # the minimal backend as a single batch.
    print('\n=========')
    async_requests = []

    input0_data = np.array([[ 10, 11, 12, 13 ]], dtype=np.int32)
    print('Sending request to batching model: IN0 = {}'.format(input0_data))
    inputs = [ httpclient.InferInput('IN0', [1, 4], "INT32") ]
    inputs[0].set_data_from_numpy(input0_data)
    async_requests.append(triton_client.async_infer('batching', inputs))

    input0_data = np.array([[ 20, 21, 22, 23 ]], dtype=np.int32)
    print('Sending request to batching model: IN0 = {}'.format(input0_data))
    inputs = [ httpclient.InferInput('IN0', [1, 4], "INT32") ]
    inputs[0].set_data_from_numpy(input0_data)
    async_requests.append(triton_client.async_infer('batching', inputs))

    for async_request in async_requests:
        # Get the result from the initiated asynchronous inference
        # request. This call will block till the server responds.
        result = async_request.get_result()
        print('Response: {}'.format(result.get_response()))
        print('OUT0 = {}'.format(result.as_numpy('OUT0')))