LlamaBatch.cc 63.5 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
// Copyright (c) OpenMMLab. All rights reserved.

lvhan028's avatar
lvhan028 committed
3
4
#include "src/turbomind/models/llama/LlamaBatch.h"
#include "src/turbomind/kernels/decoding_kernels.h"
Li Zhang's avatar
Li Zhang committed
5
#include "src/turbomind/kernels/sampling_topk_kernels.h"
Chen Xin's avatar
Chen Xin committed
6
#include "src/turbomind/macro.h"
lvhan028's avatar
lvhan028 committed
7
8
9
#include "src/turbomind/models/llama/LlamaNcclGuard.h"
#include "src/turbomind/models/llama/LlamaV2.h"
#include "src/turbomind/models/llama/Request.h"
Li Zhang's avatar
Li Zhang committed
10
#include "src/turbomind/models/llama/SequenceManager.h"
11
#include "src/turbomind/models/llama/copy.h"
Li Zhang's avatar
Li Zhang committed
12
#include "src/turbomind/models/llama/llama_kernels.h"
lvhan028's avatar
lvhan028 committed
13
14
#include "src/turbomind/models/llama/llama_utils.h"
#include "src/turbomind/utils/Tensor.h"
Li Zhang's avatar
Li Zhang committed
15
16
17
#include "src/turbomind/utils/cuda_utils.h"
#include "src/turbomind/utils/debug_utils.h"
#include "src/turbomind/utils/gemm_test/gemm_func.h"
lvhan028's avatar
lvhan028 committed
18
#include "src/turbomind/utils/logger.h"
Li Zhang's avatar
Li Zhang committed
19
20
#include <algorithm>
#include <cmath>
Li Zhang's avatar
Li Zhang committed
21
#include <cstddef>
Li Zhang's avatar
Li Zhang committed
22
#include <cstdint>
23
#include <functional>
Li Zhang's avatar
Li Zhang committed
24
#include <iomanip>
Li Zhang's avatar
Li Zhang committed
25
#include <iterator>
Li Zhang's avatar
Li Zhang committed
26
27
#include <mutex>
#include <numeric>
Li Zhang's avatar
Li Zhang committed
28
29
#include <sstream>
#include <unordered_map>
Li Zhang's avatar
Li Zhang committed
30
#include <utility>
Li Zhang's avatar
Li Zhang committed
31

lvhan028's avatar
lvhan028 committed
32
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
void PrintDecodeTokens(
    const int* token_ids, int max_seq_len, int batch_sizse, cudaStream_t stream, const std::string& msg)
{
    // tokens in [S, B] layout
    std::vector<int> tokens(max_seq_len * batch_sizse);
    check_cuda_error(cudaMemcpyAsync(tokens.data(), token_ids, sizeof(int) * tokens.size(), cudaMemcpyDefault, stream));
    check_cuda_error(cudaStreamSynchronize(stream));

    printf("[%s] ", msg.c_str());
    for (int j = 0; j < max_seq_len; ++j) {
        printf("%5d ", j);
    }
    printf("\n");
    for (int i = 0; i < batch_sizse; ++i) {
        printf("[%s] ", msg.c_str());
        for (int j = 0; j < max_seq_len; ++j) {
            // std::cout << sb_tokens[j * batch_size + i] << " ";
            printf("%5d ", tokens[j * batch_sizse + i]);
        }
        printf("\n");
    }
}
Li Zhang's avatar
Li Zhang committed
56
57
58
59
60
61
62
void ClearState(BatchState& s)
{
    std::fill_n(s.requests.begin(), s.size, nullptr);
    std::fill_n(s.sequences.begin(), s.size, nullptr);
    s.size = s.active_size = 0;
}

Chen Xin's avatar
Chen Xin committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
void DropEmbeddings(const Sequence& seq)
{
    int    seq_len = seq.tokens.size();
    int    num_emb = seq.input_embeddings.size();
    size_t sz      = num_emb;
    for (; sz >= 1; sz--) {
        if (seq.input_embedding_ranges[sz - 1].second <= seq_len) {
            break;
        }
    }
    // should we keep part of embedding?
    seq.input_embeddings.resize(sz);
    seq.input_embedding_ranges.resize(sz);
}

Li Zhang's avatar
Li Zhang committed
78
template<typename T>
Li Zhang's avatar
Li Zhang committed
79
void LlamaBatch<T>::RejectInvalidRequests(Requests& stop_reqs, Requests& infer_reqs)
Li Zhang's avatar
Li Zhang committed
80
{
AllentDan's avatar
AllentDan committed
81
    std::unordered_map<uint64_t, int> occurrence;
Li Zhang's avatar
Li Zhang committed
82

Li Zhang's avatar
Li Zhang committed
83
    auto count_occurrence = [&occurrence](const Requests& rs) {
Li Zhang's avatar
Li Zhang committed
84
        for (const auto& r : rs) {
AllentDan's avatar
AllentDan committed
85
            ++occurrence[r->id];
Li Zhang's avatar
Li Zhang committed
86
87
88
        }
    };

Li Zhang's avatar
Li Zhang committed
89
90
91
    auto reject = [](const char* type, std::shared_ptr<Request>& req, int ec) {
        TM_LOG_WARNING(
            "[RejectInvalidRequests] Skipping invalid %s request for id %ld, code = %d", type, (long)req->id, ec);
Li Zhang's avatar
Li Zhang committed
92
93
94
95
        req->signal.set_value(ec);
        req.reset();
    };

Li Zhang's avatar
Li Zhang committed
96
    auto handle_conflict_or_invalid = [this, &occurrence, &reject](Requests& rs, const char* type) {
Li Zhang's avatar
Li Zhang committed
97
98
99
100
        for (auto& r : rs) {
            if (r) {
                int ec = 0;

Li Zhang's avatar
Li Zhang committed
101
102
103
104
105
                const int  input_length = r->inputs[rank_].getVal<int>("input_lengths", 0);
                const auto get_offset   = [&](int token_count) {
                    return std::max(0, std::min(token_count, r->inputs[rank_].getVal<int>("step", token_count)));
                };

AllentDan's avatar
AllentDan committed
106
                if (occurrence[r->id] != 1) {
Li Zhang's avatar
Li Zhang committed
107
108
109
110
111
                    ec = Request::kConflict;
                }
                else if (r->start_flag && r->stop_flag) {
                    ec = Request::kInvalid;
                }
Li Zhang's avatar
Li Zhang committed
112
113
114
115
116
117
118
119
120
121
                else if (input_length > session_len_) {
                    ec = Request::kTooLong;
                }
                else if (!r->start_flag) {
                    if (auto seq = sequence_manager_->Get(r->id); seq == nullptr) {
                        ec = Request::kInvalid;
                    }
                    else if (get_offset(seq->tokens.size()) + input_length > session_len_) {
                        ec = Request::kTooLong;
                    }
Li Zhang's avatar
Li Zhang committed
122
123
124
                }

                if (ec) {
Li Zhang's avatar
Li Zhang committed
125
                    reject(type, r, ec);
Li Zhang's avatar
Li Zhang committed
126
127
128
129
130
                }
            }
        }
    };

Li Zhang's avatar
Li Zhang committed
131
    auto drop_invalid = [](Requests& rs) {
Li Zhang's avatar
Li Zhang committed
132
133
134
135
136
137
138
139
140
        int count = 0;
        for (int i = 0; i < rs.size(); ++i) {
            if (rs[i]) {
                rs[count++] = std::move(rs[i]);
            }
        }
        rs.resize(count);
    };

AllentDan's avatar
AllentDan committed
141
142
    count_occurrence(stop_reqs);
    count_occurrence(infer_reqs);
Li Zhang's avatar
Li Zhang committed
143
144
145
146
147
148
149
150

    if (!stop_reqs.empty()) {
        handle_conflict_or_invalid(stop_reqs, "stop");

        // invalidate stop-only requests for inactive sequences
        for (auto& r : stop_reqs) {
            if (r && r->end_flag == false) {
                int ec = Request::kInactive;
Li Zhang's avatar
Li Zhang committed
151
152
                for (int i = 0; i < state_->size; ++i) {
                    if (state_->requests[i] && state_->requests[i]->id == r->id) {
Li Zhang's avatar
Li Zhang committed
153
154
155
156
157
                        ec = 0;
                        break;
                    }
                }
                if (ec) {
Li Zhang's avatar
Li Zhang committed
158
                    reject("stop", r, ec);
Li Zhang's avatar
Li Zhang committed
159
160
161
162
163
164
165
166
167
168
169
170
171
                }
            }
        }

        drop_invalid(stop_reqs);
    }

    if (!infer_reqs.empty()) {
        handle_conflict_or_invalid(infer_reqs, "infer");

        // invalidate requests for busy sequences
        for (auto& r : infer_reqs) {
            if (r) {
Li Zhang's avatar
Li Zhang committed
172
173
174
                for (int i = 0; i < state_->size; ++i) {
                    if (state_->requests[i] && state_->requests[i]->id == r->id) {
                        reject("infer", r, Request::kBusy);
Li Zhang's avatar
Li Zhang committed
175
176
177
178
179
180
181
182
183
184
185
                        break;
                    }
                }
            }
        }

        drop_invalid(infer_reqs);
    }
}

template<typename T>
Li Zhang's avatar
Li Zhang committed
186
auto LlamaBatch<T>::ProcessStopRequests(const Requests& requests) -> std::vector<Signal>
Li Zhang's avatar
Li Zhang committed
187
{
Li Zhang's avatar
Li Zhang committed
188
    NvtxScope           scope("stop_request");
Li Zhang's avatar
Li Zhang committed
189
    std::vector<Signal> signals;
Li Zhang's avatar
Li Zhang committed
190
    int                 count = 0;
Li Zhang's avatar
Li Zhang committed
191
192
193
    for (const auto& r : requests) {
        int ec = Request::kFail;
        // find matching active sequence
Li Zhang's avatar
Li Zhang committed
194
        for (int i = 0; i < state_->size; ++i) {
Li Zhang's avatar
Li Zhang committed
195
            // stop & optionally erase active sequence
Li Zhang's avatar
Li Zhang committed
196
            if (state_->requests[i] && state_->requests[i]->id == r->id) {
Li Zhang's avatar
Li Zhang committed
197
                ec = 0;
Li Zhang's avatar
Li Zhang committed
198
199
                signals.push_back(Interrupt(i, true, r->end_flag));
                ++count;
Li Zhang's avatar
Li Zhang committed
200
201
202
                break;
            }
        }
Li Zhang's avatar
Li Zhang committed
203
        // mismatch, try erase inactive sequence, in this case there is no active request to interrupt
Li Zhang's avatar
Li Zhang committed
204
        if (ec && r->end_flag) {
Li Zhang's avatar
Li Zhang committed
205
206
207
            if (sequence_manager_->Erase(r->id)) {
                ec = 0;
            }
Li Zhang's avatar
Li Zhang committed
208
        }
Li Zhang's avatar
Li Zhang committed
209
        signals.push_back([=] {
Li Zhang's avatar
Li Zhang committed
210
            if (rank_ == 0) {
Li Zhang's avatar
Li Zhang committed
211
                r->signal.set_value(ec);
Li Zhang's avatar
Li Zhang committed
212
            }
Li Zhang's avatar
Li Zhang committed
213
214
215
216
        });
    }
    if (count) {
        check_cuda_error(cudaStreamSynchronize(stream_));
Li Zhang's avatar
Li Zhang committed
217
218
219
    }
    return signals;
}
akhoroshev's avatar
akhoroshev committed
220

Li Zhang's avatar
Li Zhang committed
221
222
223
template<typename T>
void LlamaBatch<T>::ProcessInferRequests(const Requests& requests)
{
Li Zhang's avatar
Li Zhang committed
224
225
    NvtxScope scope("infer_request");
    auto&     state = *incoming_;
Li Zhang's avatar
Li Zhang committed
226
227
228
229

    FT_CHECK(state.size == 0);
    FT_CHECK(state.active_size == 0);

Li Zhang's avatar
Li Zhang committed
230
    std::vector<int> existing_idx;
Li Zhang's avatar
Li Zhang committed
231

Li Zhang's avatar
Li Zhang committed
232
233
234
    int idx = 0;
    for (const auto& r : requests) {
        FT_CHECK(!state.requests[idx]);
Li Zhang's avatar
Li Zhang committed
235

Li Zhang's avatar
Li Zhang committed
236
237
238
        if (rank_ == 0) {
            TM_LOG_WARNING("[ProcessInferRequests] Request for %ld received.", (long)r->id);
        }
Li Zhang's avatar
Li Zhang committed
239

Li Zhang's avatar
Li Zhang committed
240
        state.requests[idx] = r;
Li Zhang's avatar
Li Zhang committed
241
242

        // get sequence for the request
Li Zhang's avatar
Li Zhang committed
243
244
        state.sequences[idx] = r->start_flag ? sequence_manager_->Create(r->id) : sequence_manager_->Get(r->id);
        FT_CHECK(state.sequences[idx]);
Li Zhang's avatar
Li Zhang committed
245

Li Zhang's avatar
Li Zhang committed
246
        auto& seq = *state.sequences[idx];
Li Zhang's avatar
Li Zhang committed
247
248
249
250
251

        if (int step = r->inputs[rank_].getVal<int>("step", -1); step >= 0) {
            if (step <= seq.tokens.size()) {
                seq.tokens.resize(step);
                seq.cache_len = std::min(seq.cache_len, step);
Chen Xin's avatar
Chen Xin committed
252
                DropEmbeddings(seq);
Li Zhang's avatar
Li Zhang committed
253
254
255
256
257
            }
            else if (rank_ == 0) {
                TM_LOG_WARNING(
                    "[ProcessInferRequests] Skipping invalid step (%d) setting for ID %ld", step, (long)seq.id);
            }
Li Zhang's avatar
Li Zhang committed
258
        }
Li Zhang's avatar
Li Zhang committed
259
260
261
262
263

        const int  input_length = r->inputs[rank_].getVal<int>("input_lengths");
        const int* input_ids    = r->inputs[rank_].getPtr<int>("input_ids");

        // `output_ids` contains all token ids of the sequences
Li Zhang's avatar
Li Zhang committed
264
        const auto output_ids_base = state.output_ids + session_len_ * idx;
Li Zhang's avatar
Li Zhang committed
265
266
267
268
269
270
271
272
273
274
275
276
        auto       output_ids      = output_ids_base;

        // copy history tokens
        if (!seq.tokens.empty()) {
            output_ids = Copy(seq.tokens.data(), seq.tokens.size(), output_ids);
        }

        // copy input tokens
        if (input_length) {
            output_ids = Copy(input_ids, input_length, output_ids);
        }

Chen Xin's avatar
Chen Xin committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
        // copy input embeddings
        if (r->inputs[rank_].isExist("input_embedding_ranges")) {
            const auto range_tensor = r->inputs[rank_].at("input_embedding_ranges");
            const auto emb_tensor   = r->inputs[rank_].at("input_embeddings");
            const int* ranges       = range_tensor.getPtr<int>();

            auto check_embeddings = [&](int& num_valid_embeddings) {
                if (range_tensor.shape.size() != 3 || range_tensor.shape[2] % 2 != 0) {
                    return false;
                }
                int embedding_count  = range_tensor.shape[1];
                int embedding_length = 0;
                int pre_end          = -1;

                for (size_t i = 0; i < embedding_count; i++) {
                    int begin = ranges[i * 2];
                    int end   = ranges[i * 2 + 1];
                    embedding_length += (end - begin);
                    if (begin < 0 || end < 0) {
                        break;
                    }
                    if (begin >= end || end > input_length || begin < pre_end
                        || embedding_length * model_->hidden_units_ * sizeof(T) > emb_tensor.shape[1]) {
                        return false;
                    }
                    pre_end              = end;
                    num_valid_embeddings = i + 1;
                }
                return true;
            };

            int num_valid_embeddings = 0;
            if (!check_embeddings(num_valid_embeddings)) {
                TM_LOG_WARNING("[ImageFeature] Skip invalid input embeddings, id = %ld, input_length = %d, "
                               "input embeddings = %s, range_tensor = %s",
                               (long)seq.id,
                               input_length,
                               emb_tensor.toString().c_str(),
                               range_tensor.toString().c_str());
            }
            else {
                char* emb_tensor_ptr = emb_tensor.getPtr<char>();
                for (size_t i = 0; i < num_valid_embeddings; i++) {
                    int    begin = ranges[i * 2];
                    int    end   = ranges[i * 2 + 1];
                    size_t count = (end - begin) * model_->hidden_units_ * sizeof(T);
                    seq.input_embeddings.emplace_back((std::byte*)emb_tensor_ptr, (std::byte*)(emb_tensor_ptr + count));
                    seq.input_embedding_ranges.emplace_back(begin + seq.tokens.size(), end + seq.tokens.size());
                    emb_tensor_ptr += count;
                }
            }
        }

Li Zhang's avatar
Li Zhang committed
330
        // total context length (history + input)
Li Zhang's avatar
Li Zhang committed
331
332
        state.h_context_length[idx] = output_ids - output_ids_base;
        state.h_finished[idx]       = false;
Li Zhang's avatar
Li Zhang committed
333

Li Zhang's avatar
Li Zhang committed
334
335
        const int request_output_len = state.requests[idx]->inputs[rank_].getVal<int>("request_output_len");
        state.seq_len_limit[idx]     = state.h_context_length[idx] + request_output_len;
Li Zhang's avatar
Li Zhang committed
336
337
        // `length_criterion` sets finish flag when step >= seq_limit_len, however when step == seq_limit_len
        // the actual sequence length is seq_limit_len + 1, hence seq_limit_len must truncated to session_len - 1
Li Zhang's avatar
Li Zhang committed
338
339
        if (state.seq_len_limit[idx] >= session_len_) {
            state.seq_len_limit[idx] = session_len_ - 1;
Li Zhang's avatar
Li Zhang committed
340
            if (rank_ == 0) {
Li Zhang's avatar
Li Zhang committed
341
                const int trunc_output_len = state.seq_len_limit[idx] - state.h_context_length[idx];
Li Zhang's avatar
Li Zhang committed
342
343
344
                TM_LOG_WARNING(
                    "[ProcessInferRequests] [%ld] total sequence length (%d + %d) exceeds `session_len` (%d), `request_output_len` is truncated to %d",
                    (long)seq.id,
Li Zhang's avatar
Li Zhang committed
345
                    state.h_context_length[idx],
Li Zhang's avatar
Li Zhang committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
                    request_output_len,
                    (int)session_len_,
                    trunc_output_len);
            }
        }

        // compute rope scaling factor
        if (r->start_flag) {
            seq.rope_theta      = model_->attn_params_.rotary_embedding_base;
            auto scaling_factor = 1.f;
            if (r->inputs[rank_].isExist("rope_scaling_factor")) {  // runtime scaling factor
                scaling_factor = r->inputs[rank_].getVal<float>("rope_scaling_factor");
            }
            else if (model_->attn_params_.rope_scaling_factor >= 1.f) {  // infer by `seq_len_limit`
                scaling_factor   = model_->attn_params_.rope_scaling_factor;
Li Zhang's avatar
Li Zhang committed
361
                auto max_seq_len = state.seq_len_limit[idx];
Li Zhang's avatar
Li Zhang committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
                auto max_pos_emb = model_->attn_params_.max_position_embeddings;
                if (max_seq_len > max_pos_emb) {
                    scaling_factor = scaling_factor * max_seq_len / max_pos_emb - (scaling_factor - 1);
                    // scaling_factor = std::max(exp2f(ceilf(log2f((float)max_seq_len / max_pos_emb) + 1.f))
                    // - 1.f, 1.f);
                }
            }
            if (scaling_factor != 1.f) {
                float rope_dim = model_->attn_params_.rotary_embedding_dim;
                seq.rope_theta *= powf(scaling_factor, rope_dim / (rope_dim - 2.f));
                TM_LOG_INFO("[ProcessInferRequests] %ld rope_scaling_factor: %f, rope_theta = %f",
                            (long)seq.id,
                            scaling_factor,
                            seq.rope_theta);
            }
        }
Li Zhang's avatar
Li Zhang committed
378
        state.h_rope_theta[idx] = seq.rope_theta;
Li Zhang's avatar
Li Zhang committed
379

Li Zhang's avatar
Li Zhang committed
380
381
382
383
384
385
386
387
        if (r->start_flag) {
            // prepare to initialize random state for new sequence
            h_random_seed_[idx] = r->inputs[rank_].getVal<unsigned long long>("random_seed", 0);
        }
        else {
            // Recover device states if not a new sequence
            h_curand_state_[existing_idx.size()] = *(curandState_t*)seq.random_state.data();
            existing_idx.push_back(idx);
Li Zhang's avatar
Li Zhang committed
388
389
        }

Li Zhang's avatar
Li Zhang committed
390
        // ! SHARED STATE IS MODIFIED, BARRIER SYNCHRONIZATION REQUIRED
Li Zhang's avatar
Li Zhang committed
391
        // assign priority based on arrival time
Li Zhang's avatar
Li Zhang committed
392
        if (rank_ == 0) {
393
            r->unique_id = request_count_++;
Li Zhang's avatar
Li Zhang committed
394
        }
Li Zhang's avatar
Li Zhang committed
395
396

        // increment pointer
Li Zhang's avatar
Li Zhang committed
397
        idx++;
Li Zhang's avatar
Li Zhang committed
398
    }
Li Zhang's avatar
Li Zhang committed
399

Li Zhang's avatar
Li Zhang committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    state.size = idx;

    // when there are new sequences
    if (state.size != existing_idx.size()) {
        // copy random seeds to device
        Copy(h_random_seed_, state.size, d_random_seed_);
        // initialize random states
        invokeCurandBatchInitialize(state.curand_state, state.size, d_random_seed_, stream_);
        sync_check_cuda_error();
    }

    if (!existing_idx.empty()) {
        // copy existing curand states to device
        Copy(h_curand_state_, existing_idx.size(), d_curand_state_);
        // insert the states to their correct positions in the batch
        IndexedCopy({}, existing_idx, std::tuple{d_curand_state_, state.curand_state, 1});
    }
Li Zhang's avatar
Li Zhang committed
417
418
419
}

template<typename T>
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
void LlamaBatch<T>::AdjustMaxInputCount(GenerationState&                    g,
                                        const std::vector<const Sequence*>& sequences,
                                        const std::vector<int>&             context_length)
{
    int input_count = 0;
    for (int i = 0; i < sequences.size(); ++i) {
        input_count += context_length[i] - sequences[i]->cache_len;
    }
    const int batch_size = sequences.size();
    input_count -= batch_size;

    // min tokens per iter for satisfying max prefill iters constraint
    input_count = (input_count + max_prefill_iters_ - 1) / max_prefill_iters_;

    if (g.min_input_count.empty()) {
        g.min_input_count.resize(max_prefill_iters_);
    }
    g.min_input_count.pop_front();
    g.min_input_count.push_back(input_count);
    /// TODO: sub-optimal when there are inactive sequences due to memory constraint
    for (auto& x : g.min_input_count) {
        x = std::max(x, input_count);
    }

    input_count = std::max(g.min_input_count.front() + batch_size, num_tokens_per_iter_);
    input_count = std::min(input_count, max_context_token_num_);
    // update max input count
    g.max_input_count1 = input_count;
    g.max_input_count2 = std::min(input_count + extra_tokens_per_iter_, max_context_token_num_);
}

template<typename T>
void LlamaBatch<T>::Initialize(GenerationState& g)
Li Zhang's avatar
Li Zhang committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
{
    NvtxScope                                scope("initialize");
    std::vector<const Sequence*>             sequences;
    std::vector<Sequence::Status>            status;
    std::vector<uint64_t>                    priorities;
    std::vector<int>                         context_lengths;
    std::vector<std::pair<BatchState*, int>> coords;

    // count the holes introduced by finished requests in from previous iteration or stop requests from
    // current iteration
    int holes{};
    int active_holes{};
    for (int i = 0; i < state_->size; ++i) {
        if (!state_->requests[i]) {
            ++holes;
            if (i < state_->active_size) {
                ++active_holes;
            }
        }
    }

    auto process = [&](BatchState* state) {
        for (int i = 0; i < state->size; ++i) {
            if (auto& r = state->requests[i]) {
                sequences.push_back(state->sequences[i]);
                status.push_back(state->sequences[i]->status);
479
                priorities.push_back(r->unique_id);
Li Zhang's avatar
Li Zhang committed
480
481
482
483
484
485
486
487
488
                context_lengths.push_back(state->h_context_length[i]);
                coords.emplace_back(state, i);
            }
        }
    };

    process(state_);
    process(incoming_);

489
490
491
492
493
494
495
496
    auto adjust = [this, &g](const Sequences&        sequences,
                             const std::vector<int>& context_length) -> std::pair<int, int> {
        AdjustMaxInputCount(g, sequences, context_length);
        return {g.max_input_count1, g.max_input_count2};
    };

    // TM_LOG_INFO("max_input_count %d", max_input_count);
    auto outcome = sequence_manager_->Materialize(sequences, context_lengths, priorities, step_length_, adjust);
Li Zhang's avatar
Li Zhang committed
497
498
499
500
501
502
503
504
505
506
507
508
509

    if (outcome.allocation || outcome.swap_in || outcome.swap_out) {
        dbg(outcome);
    }

    bool exchange = outcome.swap_in + outcome.swap_out > 0;

    std::vector<int> idxs(sequences.size());
    std::iota(idxs.begin(), idxs.end(), 0);

    if (exchange || holes || incoming_->size) {
        // put active ones first
        auto active_end = std::stable_partition(idxs.begin(), idxs.end(), [&](int idx) {
510
            return sequences[idx]->status == Sequence::kActive;  // current status
Li Zhang's avatar
Li Zhang committed
511
512
513
        });

        // all blocks are not enough to hold a single sequence
Li Zhang's avatar
Li Zhang committed
514
515
516
        if (!sequences.empty()) {
            FT_CHECK_WITH_INFO(active_end != idxs.begin(), "No enough blocks.");
        }
Li Zhang's avatar
Li Zhang committed
517

518
519
520
        // move the partial seq to the back
        auto partial_beg = std::stable_partition(idxs.begin(), active_end, [&](int i) {
            return sequences[i]->cache_len + sequences[i]->input_length == context_lengths[i];
Li Zhang's avatar
Li Zhang committed
521
        });
522
        FT_CHECK(active_end - partial_beg <= 1);
Li Zhang's avatar
Li Zhang committed
523

524
525
526
527
528
529
530
531
532
        auto swapin_beg = std::stable_partition(idxs.begin(), partial_beg, [&](int i) {
            return status[i] == Sequence::kActive;  // past status
        });

        // sort swap-ins according to input length
        if (swapin_beg != partial_beg) {
            std::stable_sort(swapin_beg, partial_beg, [&](int i, int j) {
                return sequences[i]->input_length < sequences[j]->input_length;
            });
Li Zhang's avatar
Li Zhang committed
533
534
535
536
        }

        // Copy sequence states to back buffer
        FT_CHECK(back_->size == 0 && back_->active_size == 0);
Li Zhang's avatar
Li Zhang committed
537
        std::vector<std::tuple<BatchState*, BatchState*, int, int>> cpys;
Li Zhang's avatar
Li Zhang committed
538
539
540
541
542
        for (const auto& i : idxs) {
            auto& s = *sequences[i];
            if (s.status == Sequence::kActive) {
                ++back_->active_size;
            }
Li Zhang's avatar
Li Zhang committed
543
            cpys.emplace_back(coords[i].first, back_, coords[i].second, back_->size++);
Li Zhang's avatar
Li Zhang committed
544
        }
Li Zhang's avatar
Li Zhang committed
545
        CopyState(cpys);
Li Zhang's avatar
Li Zhang committed
546
547
548
549
550
551
552
        // Swap the buffers
        std::swap(state_, back_);

        ClearState(*back_);
        ClearState(*incoming_);
    }

Li Zhang's avatar
Li Zhang committed
553
554
    FT_CHECK(state_->size <= max_batch_size_);

Li Zhang's avatar
Li Zhang committed
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
    /// Update block ptrs when there were
    //  1. swap-in or swap-out
    //  2. holes in the active buffer
    //  3. new allocations (for existing active sequences)
    if (exchange || active_holes || outcome.allocation) {
        // Prepare intermediate buffers
        h_cu_block_counts_[0] = 0;

        auto k_ptrs = h_k_block_ptrs_;
        auto v_ptrs = h_v_block_ptrs_;

        const int batch_size = state_->active_size;

        for (int i = 0; i < batch_size; ++i) {
            const auto& seq = *state_->sequences[i];

            // cumulative num of blocks
            h_cu_block_counts_[i + 1] = h_cu_block_counts_[i] + seq.blocks.size();

Li Zhang's avatar
Li Zhang committed
574
575
576
            FT_CHECK_WITH_INFO(h_cu_block_counts_[i + 1] <= sequence_manager_->max_block_count(),
                               std::to_string(h_cu_block_counts_[i + 1]));

Li Zhang's avatar
Li Zhang committed
577
578
            k_ptrs = std::transform(seq.blocks.cbegin(), seq.blocks.cend(), k_ptrs, [&](int block_id) {
                return reinterpret_cast<uintptr_t>(sequence_manager_->GetKeyPtr(block_id));
Li Zhang's avatar
Li Zhang committed
579
            });
Li Zhang's avatar
Li Zhang committed
580
581
            v_ptrs = std::transform(seq.blocks.cbegin(), seq.blocks.cend(), v_ptrs, [&](int block_id) {
                return reinterpret_cast<uintptr_t>(sequence_manager_->GetValPtr(block_id));
Li Zhang's avatar
Li Zhang committed
582
583
584
585
586
587
588
589
590
591
            });
        }

        static_assert(sizeof(uintptr_t) == sizeof(void*));

        Copy(h_cu_block_counts_, batch_size + 1, cu_block_counts_);
        Copy(h_k_block_ptrs_, h_cu_block_counts_[batch_size], k_block_ptrs_);
        Copy(h_v_block_ptrs_, h_cu_block_counts_[batch_size], v_block_ptrs_);
    }

592
593
594
595
596
    const int batch_size = state_->active_size;

    // check if the last sequence is partial
    int partial     = 0;
    int partial_len = -1;
Li Zhang's avatar
Li Zhang committed
597
    if (state_->active_size) {
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
        const int i = state_->active_size - 1;
        partial = state_->sequences[i]->cache_len + state_->sequences[i]->input_length != state_->h_context_length[i];
        if (partial) {
            // backup full context length of partial
            partial_len = state_->h_context_length[i];
            // replace with partial context length
            state_->h_context_length[i] = state_->sequences[i]->cache_len + state_->sequences[i]->input_length;
        }
    }

    const int max_context_len = *std::max_element(state_->h_context_length, state_->h_context_length + batch_size);

    std::vector<uint64_t> unique_ids(batch_size);
    for (int i = 0; i < batch_size; ++i) {
        unique_ids[i] = state_->requests[i]->unique_id;
    }

    // Real-time context length that will change during generation
    Copy(state_->h_context_length, batch_size, context_length_buf_);
    Copy(state_->h_finished, batch_size, finished_buf_);
    Copy(state_->h_rope_theta, batch_size, rope_theta_);

    // used for dispatching split-k decoding kernels
    const int sum_seq_len =
        std::accumulate(state_->h_context_length, state_->h_context_length + batch_size, -batch_size);
    const int max_seq_len = *std::max_element(state_->h_context_length, state_->h_context_length + batch_size) - 1;

    // TM_LOG_INFO(
    //     "[init] batch_size = %d, max_ctx_len = %d, partial = %d", (int)batch_size, (int)max_context_len, partial);

    bool skip_init_sampling = std::equal(g.unique_ids.begin(),  //
                                         g.unique_ids.end() - g.partial,
                                         unique_ids.begin(),
                                         unique_ids.end() - partial);

    g.sum_seq_len            = sum_seq_len;
    g.max_seq_len            = max_seq_len;
    g.partial                = partial;
    g.partial_context_legnth = partial_len;
    g.unique_ids             = std::move(unique_ids);
    g.finished_count         = 0;

    if (!skip_init_sampling) {
        g.max_init_ctx_len = max_context_len;
        g.step             = max_context_len;
        InitializeSampling(g);
    }
Li Zhang's avatar
Li Zhang committed
645
646
647
}

template<typename T>
Li Zhang's avatar
Li Zhang committed
648
void LlamaBatch<T>::CopyState(const std::vector<std::tuple<BatchState*, BatchState*, int, int>>& desc)
Li Zhang's avatar
Li Zhang committed
649
{
Li Zhang's avatar
Li Zhang committed
650
651
652
653
    if (desc.empty()) {
        return;
    }

Li Zhang's avatar
Li Zhang committed
654
655
    std::vector<int> idxs(desc.size());
    std::iota(idxs.begin(), idxs.end(), 0);
Li Zhang's avatar
Li Zhang committed
656

Li Zhang's avatar
Li Zhang committed
657
    std::sort(idxs.begin(), idxs.end(), [&](int i, int j) { return desc[i] < desc[j]; });
Li Zhang's avatar
Li Zhang committed
658

Li Zhang's avatar
Li Zhang committed
659
660
661
    auto get_signature = [&](int i) -> std::pair<BatchState*, BatchState*> {
        return std::make_pair(std::get<0>(desc[idxs[i]]), std::get<1>(desc[idxs[i]]));
    };
Li Zhang's avatar
Li Zhang committed
662

Li Zhang's avatar
Li Zhang committed
663
664
665
666
667
668
669
670
671
672
    std::vector<int> offsets;
    auto             current = get_signature(0);
    offsets.push_back(0);
    for (int i = 0; i < idxs.size(); ++i) {
        if (auto signature = get_signature(i); signature != current) {
            current = signature;
            offsets.push_back(i);
        }
    }
    offsets.push_back(idxs.size());
Li Zhang's avatar
Li Zhang committed
673

Li Zhang's avatar
Li Zhang committed
674
675
676
    for (int bi = 1; bi < offsets.size(); ++bi) {
        int beg = offsets[bi - 1];
        int end = offsets[bi];
Li Zhang's avatar
Li Zhang committed
677

Li Zhang's avatar
Li Zhang committed
678
679
680
        if (beg == end) {
            continue;
        }
Li Zhang's avatar
Li Zhang committed
681

Li Zhang's avatar
Li Zhang committed
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
        auto [s, d] = get_signature(beg);

        std::vector<int> s_idx;
        std::vector<int> d_idx;
        for (int i = beg; i < end; ++i) {
            s_idx.push_back(std::get<2>(desc[idxs[i]]));
            d_idx.push_back(std::get<3>(desc[idxs[i]]));
        }

        IndexedCopy(s_idx,
                    d_idx,
                    std::tuple{s->output_ids, d->output_ids, session_len_},
                    std::tuple{s->curand_state, d->curand_state, 1});
    }

    for (const auto& [s, d, si, di] : desc) {
        d->h_context_length[di] = s->h_context_length[si];
        d->h_finished[di]       = s->h_finished[si];
        d->h_rope_theta[di]     = s->h_rope_theta[si];
        d->seq_len_limit[di]    = s->seq_len_limit[si];
        d->sequences[di]        = s->sequences[si];
        d->requests[di]         = s->requests[si];
    }
Li Zhang's avatar
Li Zhang committed
705
706
707
708
}

template<typename T>
void LlamaBatch<T>::AllocateBuffer(size_t batch_size, size_t session_len)
Li Zhang's avatar
Li Zhang committed
709
{
lvhan028's avatar
lvhan028 committed
710
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
711
712
    const size_t batchxbeam = batch_size;

Li Zhang's avatar
Li Zhang committed
713
714
715
716
717
718
    const size_t hidden_units      = model_->hidden_units_;
    const size_t vocab_size        = model_->vocab_size_padded_;
    const size_t head_dim          = model_->size_per_head_;
    const size_t local_kv_head_num = model_->local_kv_head_num_;
    // +1 padding, BlockIterator does not use predicate
    const size_t max_block_count = sequence_manager_->max_block_count() + 1;
Li Zhang's avatar
Li Zhang committed
719
720
721

    context_decoder_input_buf_ =
        (T*)allocator_->reMalloc(context_decoder_input_buf_, sizeof(T) * max_context_token_num_ * hidden_units, false);
722
723
    context_decoder_output_buf_ =
        (T*)allocator_->reMalloc(context_decoder_output_buf_, sizeof(T) * max_context_token_num_ * hidden_units, false);
Li Zhang's avatar
Li Zhang committed
724
725
726
    context_decoder_ids_buf_ =
        (int*)allocator_->reMalloc(context_decoder_ids_buf_, sizeof(int) * max_context_token_num_, false);

Li Zhang's avatar
Li Zhang committed
727
728
729
730
731
732
733
734
    tmp_k_cache_buf_ = (T*)allocator_->reMalloc(
        tmp_k_cache_buf_, sizeof(T) * max_context_token_num_ * local_kv_head_num * head_dim, false);
    tmp_v_cache_buf_ = (T*)allocator_->reMalloc(
        tmp_v_cache_buf_, sizeof(T) * max_context_token_num_ * local_kv_head_num * head_dim, false);

    tmp_k_ptrs_ = (void**)allocator_->reMalloc(tmp_k_ptrs_, sizeof(void*) * batch_size, false);
    tmp_v_ptrs_ = (void**)allocator_->reMalloc(tmp_v_ptrs_, sizeof(void*) * batch_size, false);

Li Zhang's avatar
Li Zhang committed
735
736
737
    decoder_input_buf_  = (T*)allocator_->reMalloc(decoder_input_buf_, sizeof(T) * batchxbeam * hidden_units, false);
    decoder_output_buf_ = (T*)allocator_->reMalloc(decoder_output_buf_, sizeof(T) * batchxbeam * hidden_units, false);

738
739
740
741
    input_ids_buf_       = (int*)allocator_->reMalloc(input_ids_buf_, sizeof(int) * batchxbeam * session_len, true);
    input_length_buf_    = (int*)allocator_->reMalloc(input_length_buf_, sizeof(int) * batchxbeam);
    context_length_buf_  = (int*)allocator_->reMalloc(context_length_buf_, sizeof(int) * batchxbeam);
    init_context_length_ = (int*)allocator_->reMalloc(init_context_length_, sizeof(int) * batchxbeam);
Li Zhang's avatar
Li Zhang committed
742

Li Zhang's avatar
Li Zhang committed
743
    sequence_lengths_ = (int*)allocator_->reMalloc(sequence_lengths_, sizeof(int) * batchxbeam, false);
Li Zhang's avatar
Li Zhang committed
744

Li Zhang's avatar
Li Zhang committed
745
746
747
    cu_block_counts_ = (int*)allocator_->reMalloc(cu_block_counts_, sizeof(int) * (batch_size + 1));
    k_block_ptrs_    = (uintptr_t*)allocator_->reMalloc(k_block_ptrs_, sizeof(uintptr_t) * max_block_count);
    v_block_ptrs_    = (uintptr_t*)allocator_->reMalloc(v_block_ptrs_, sizeof(uintptr_t) * max_block_count);
Li Zhang's avatar
Li Zhang committed
748
749
750
751
752
753
754
755
756

    logits_buf_       = (float*)allocator_->reMalloc(logits_buf_, sizeof(float) * batchxbeam * vocab_size, false);
    local_logits_buf_ = (float*)allocator_->reMalloc(local_logits_buf_, sizeof(float) * batchxbeam * vocab_size, false);

    token_ids_buf_ = (int*)allocator_->reMalloc(token_ids_buf_, sizeof(int) * batchxbeam * session_len * 2, true);

    finished_buf_  = (bool*)allocator_->reMalloc(finished_buf_, sizeof(bool) * batchxbeam, false);
    seq_limit_len_ = (uint32_t*)allocator_->reMalloc(seq_limit_len_, sizeof(uint32_t) * batch_size, false);

Li Zhang's avatar
Li Zhang committed
757
758
    rope_theta_ = (float*)allocator_->reMalloc(rope_theta_, sizeof(float) * batch_size, false);

Li Zhang's avatar
Li Zhang committed
759
760
761
762
    is_allocate_buffer_ = true;
}

template<typename T>
Li Zhang's avatar
Li Zhang committed
763
void LlamaBatch<T>::AllocatePersistantBuffer(size_t max_batch_size)
Li Zhang's avatar
Li Zhang committed
764
{
Li Zhang's avatar
Li Zhang committed
765
766
767
768
769
770
    d_stop_words_ = (int*)allocator_->reMalloc(d_stop_words_, sizeof(int) * max_batch_size * kMaxStopBadWordsLen, true);
    d_bad_words_  = (int*)allocator_->reMalloc(d_bad_words_, sizeof(int) * max_batch_size * kMaxStopBadWordsLen, true);
    h_stop_words_ =
        (int*)allocator_->reMalloc(h_stop_words_, sizeof(int) * max_batch_size * kMaxStopBadWordsLen, true, true);
    h_bad_words_ =
        (int*)allocator_->reMalloc(h_bad_words_, sizeof(int) * max_batch_size * kMaxStopBadWordsLen, true, true);
Li Zhang's avatar
Li Zhang committed
771
772
773
774
775
776
777

    h_runtime_top_k_ = (int*)allocator_->reMalloc(h_runtime_top_k_, sizeof(int) * max_batch_size, true, true);
    h_runtime_top_p_ = (float*)allocator_->reMalloc(h_runtime_top_p_, sizeof(float) * max_batch_size, true, true);
    h_temperature_   = (float*)allocator_->reMalloc(h_temperature_, sizeof(float) * max_batch_size, true, true);
    h_repetition_penalty_ =
        (float*)allocator_->reMalloc(h_repetition_penalty_, sizeof(float) * max_batch_size, true, true);

Li Zhang's avatar
Li Zhang committed
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
    h_random_seed_ = (unsigned long long*)allocator_->reMalloc(
        h_random_seed_, sizeof(unsigned long long) * max_batch_size, true, true);
    d_random_seed_ = (unsigned long long*)allocator_->reMalloc(
        d_random_seed_, sizeof(unsigned long long) * max_batch_size, true, false);

    h_curand_state_ =
        (curandState_t*)allocator_->reMalloc(h_curand_state_, sizeof(curandState_t) * max_batch_size, true, true);
    d_curand_state_ =
        (curandState_t*)allocator_->reMalloc(d_curand_state_, sizeof(curandState_t) * max_batch_size, true, false);

    d_end_ids_buf_ = (int*)allocator_->reMalloc(d_end_ids_buf_, sizeof(int) * max_batch_size, false);
    h_end_ids_buf_ = (int*)allocator_->reMalloc(h_end_ids_buf_, sizeof(int) * max_batch_size, false, true);

    sampling_params_ = {
        {"stop_words_list", (std::byte*)h_stop_words_, (std::byte*)d_stop_words_},
        {"bad_words_list", (std::byte*)h_bad_words_, (std::byte*)d_bad_words_},
        {"runtime_top_k", (std::byte*)h_runtime_top_k_, nullptr},
        {"runtime_top_p", (std::byte*)h_runtime_top_p_, nullptr},
        {"temperature", (std::byte*)h_temperature_, nullptr},
        {"repetition_penalty", (std::byte*)h_repetition_penalty_, nullptr},
    };
Li Zhang's avatar
Li Zhang committed
799

Li Zhang's avatar
Li Zhang committed
800
801
    for (auto& s : states_) {
        s.output_ids = (int*)allocator_->reMalloc(s.output_ids, sizeof(int) * max_batch_size * session_len_, true);
Li Zhang's avatar
Li Zhang committed
802
803
        s.curand_state =
            (curandState_t*)allocator_->reMalloc(s.curand_state, sizeof(curandState_t) * max_batch_size, true);
Li Zhang's avatar
Li Zhang committed
804
805
806
    }

    const size_t max_block_count = sequence_manager_->max_block_count();
Li Zhang's avatar
Li Zhang committed
807
808

    {
Li Zhang's avatar
Li Zhang committed
809
        NcclGuard barrier(model_->tensor_para_, stream_, true);
Li Zhang's avatar
Li Zhang committed
810
811
812
813
        h_input_ids_buf_ =
            (int*)allocator_->reMalloc(h_input_ids_buf_, sizeof(int) * max_batch_size * session_len_, false, true);
        h_input_length_buf_ =
            (int*)allocator_->reMalloc(h_input_length_buf_, sizeof(int) * max_batch_size, false, true);
Li Zhang's avatar
Li Zhang committed
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831

        h_tmp_k_ptrs_ = (void**)allocator_->reMalloc(h_tmp_k_ptrs_, sizeof(void*) * max_batch_size, false, true);
        h_tmp_v_ptrs_ = (void**)allocator_->reMalloc(h_tmp_v_ptrs_, sizeof(void*) * max_batch_size, false, true);

        h_cu_block_counts_ =
            (int*)allocator_->reMalloc(h_cu_block_counts_, sizeof(int) * (max_batch_size + 1), false, true);
        h_k_block_ptrs_ =
            (uintptr_t*)allocator_->reMalloc(h_k_block_ptrs_, sizeof(uintptr_t) * max_block_count, false, true);
        h_v_block_ptrs_ =
            (uintptr_t*)allocator_->reMalloc(h_v_block_ptrs_, sizeof(uintptr_t) * max_block_count, false, true);

        for (auto& s : states_) {
            s.h_context_length =
                (int*)allocator_->reMalloc(s.h_context_length, sizeof(int) * max_batch_size, false, true);
            s.h_finished   = (bool*)allocator_->reMalloc(s.h_finished, sizeof(bool) * max_batch_size * 2, false, true);
            s.h_rope_theta = (float*)allocator_->reMalloc(s.h_rope_theta, sizeof(float) * max_batch_size, false, true);
        }

Li Zhang's avatar
Li Zhang committed
832
833
        h_seq_limit_len_ =
            (uint32_t*)allocator_->reMalloc(h_seq_limit_len_, sizeof(uint32_t) * max_batch_size, false, true);
Li Zhang's avatar
Li Zhang committed
834

Li Zhang's avatar
Li Zhang committed
835
836
        h_output_ids_ =
            (int*)allocator_->reMalloc(h_output_ids_, sizeof(int) * max_batch_size * session_len_, false, true);
Li Zhang's avatar
Li Zhang committed
837
838
839
840
841
842
    }

    is_allocate_persistant_buffer_ = true;
}

template<typename T>
Li Zhang's avatar
Li Zhang committed
843
void LlamaBatch<T>::FreeBuffer()
Li Zhang's avatar
Li Zhang committed
844
{
lvhan028's avatar
lvhan028 committed
845
    TM_LOG_DEBUG(__PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
846
847
    if (is_allocate_buffer_) {
        allocator_->free((void**)&context_decoder_input_buf_);
848
        allocator_->free((void**)&context_decoder_output_buf_);
Li Zhang's avatar
Li Zhang committed
849
850
        allocator_->free((void**)&context_decoder_ids_buf_);

Li Zhang's avatar
Li Zhang committed
851
852
853
854
855
        allocator_->free((void**)&tmp_k_cache_buf_);
        allocator_->free((void**)&tmp_v_cache_buf_);
        allocator_->free((void**)&tmp_k_ptrs_);
        allocator_->free((void**)&tmp_v_ptrs_);

Li Zhang's avatar
Li Zhang committed
856
857
858
859
860
861
        allocator_->free((void**)&decoder_input_buf_);
        allocator_->free((void**)&decoder_output_buf_);

        allocator_->free((void**)&input_ids_buf_);
        allocator_->free((void**)&input_length_buf_);
        allocator_->free((void**)&context_length_buf_);
862
        allocator_->free((void**)&init_context_length_);
Li Zhang's avatar
Li Zhang committed
863
864
865

        allocator_->free((void**)&sequence_lengths_);

Li Zhang's avatar
Li Zhang committed
866
867
868
        allocator_->free((void**)&cu_block_counts_);
        allocator_->free((void**)&k_block_ptrs_);
        allocator_->free((void**)&v_block_ptrs_);
Li Zhang's avatar
Li Zhang committed
869
870
871
872

        allocator_->free((void**)&logits_buf_);
        allocator_->free((void**)&local_logits_buf_);

873
874
875
876
877
878
879
        if (local_context_logits_buf_) {
            allocator_->free((void**)&local_context_logits_buf_);
        }
        if (context_logits_buf_) {
            allocator_->free((void**)&context_logits_buf_);
        }

Li Zhang's avatar
Li Zhang committed
880
881
        allocator_->free((void**)&token_ids_buf_);

Li Zhang's avatar
Li Zhang committed
882
883
884
        allocator_->free((void**)&d_end_ids_buf_);
        allocator_->free((void**)&h_end_ids_buf_, true);

Li Zhang's avatar
Li Zhang committed
885
886
887
        allocator_->free((void**)&finished_buf_);
        allocator_->free((void**)&seq_limit_len_);

Li Zhang's avatar
Li Zhang committed
888
889
        allocator_->free((void**)&rope_theta_);

Li Zhang's avatar
Li Zhang committed
890
891
892
893
        is_allocate_buffer_ = false;
    }

    if (is_allocate_persistant_buffer_) {
Li Zhang's avatar
Li Zhang committed
894
895
896
897
898
899
900
901
902
903

        allocator_->free((void**)&d_stop_words_);
        allocator_->free((void**)&h_stop_words_, true);
        allocator_->free((void**)&d_bad_words_);
        allocator_->free((void**)&h_bad_words_, true);
        allocator_->free((void**)&d_random_seed_);
        allocator_->free((void**)&h_random_seed_, true);
        allocator_->free((void**)&d_curand_state_);
        allocator_->free((void**)&h_curand_state_, true);

Li Zhang's avatar
Li Zhang committed
904
905
906
907
908
        for (auto& s : states_) {
            allocator_->free((void**)&s.h_context_length, true);
            allocator_->free((void**)&s.h_finished, true);
            allocator_->free((void**)&s.h_rope_theta, true);
            allocator_->free((void**)&s.output_ids);
Li Zhang's avatar
Li Zhang committed
909
            allocator_->free((void**)&s.curand_state);
Li Zhang's avatar
Li Zhang committed
910
911
912
913
914
915
        }
        allocator_->free((void**)&h_tmp_k_ptrs_, true);
        allocator_->free((void**)&h_tmp_v_ptrs_, true);
        allocator_->free((void**)&h_cu_block_counts_, true);
        allocator_->free((void**)&h_k_block_ptrs_, true);
        allocator_->free((void**)&h_v_block_ptrs_, true);
Li Zhang's avatar
Li Zhang committed
916
917
918
919
        allocator_->free((void**)&h_input_ids_buf_, true);
        allocator_->free((void**)&h_input_length_buf_, true);
        allocator_->free((void**)&h_seq_limit_len_, true);

Li Zhang's avatar
Li Zhang committed
920
921
        allocator_->free((void**)&h_output_ids_, true);

Li Zhang's avatar
Li Zhang committed
922
923
924
925
926
        is_allocate_persistant_buffer_ = false;
    }
}

template<typename T>
927
928
929
930
LlamaBatch<T>::LlamaBatch(const EngineParams& params, int cache_block_seq_len, int quant_policy, LlamaV2<T>* model):
    max_batch_size_(params.max_batch_size),
    max_context_token_num_(params.max_context_token_num),
    session_len_(params.session_len),
Li Zhang's avatar
Li Zhang committed
931
932
    rank_(model->tensor_para_.rank_),
    debug_(model->debug_),
933
    step_length_(params.step_length),
Li Zhang's avatar
Li Zhang committed
934
    model_(model),
935
936
937
938
    data_type_(getTensorType<T>()),
    num_tokens_per_iter_(params.num_tokens_per_iter),
    extra_tokens_per_iter_(params.extra_tokens_per_iter),
    max_prefill_iters_(params.max_prefill_iters)
Li Zhang's avatar
Li Zhang committed
939
{
Li Zhang's avatar
Li Zhang committed
940
941
942
943
    stream_         = model_->stream_;
    allocator_      = model_->allocator_;
    cublas_wrapper_ = model_->cublas_wrapper_;

944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
    const size_t elem_bits = (quant_policy & QuantPolicy::kCacheKVInt8) ? 8 : sizeof(T) * 8;

    sequence_manager_.reset(new SequenceManager{model_->num_layer_,
                                                model_->local_kv_head_num_,
                                                model_->size_per_head_,
                                                (size_t)cache_block_seq_len,
                                                params.cache_max_block_count,
                                                params.cache_chunk_size,
                                                elem_bits,
                                                model->tensor_para_.rank_,
                                                allocator_});

    const size_t max_session_len = sequence_manager_->max_block_count() * cache_block_seq_len;
    if (max_session_len < session_len_) {
        if (rank_ == 0) {
            TM_LOG_WARNING("No enough blocks for `session_len` (%d), `session_len` truncated to %d.",
                           session_len_,
                           max_session_len);
        }
        session_len_ = max_session_len;
    }

966
967
    FT_CHECK(max_context_token_num_ >= session_len_);

Li Zhang's avatar
Li Zhang committed
968
    for (auto& s : states_) {
969
970
971
        s.requests.resize(max_batch_size_);
        s.sequences.resize(max_batch_size_);
        s.seq_len_limit.resize(max_batch_size_);
Li Zhang's avatar
Li Zhang committed
972
    }
Li Zhang's avatar
Li Zhang committed
973

Li Zhang's avatar
Li Zhang committed
974
975
976
    state_    = &states_[0];
    back_     = &states_[1];
    incoming_ = &states_[2];
Li Zhang's avatar
Li Zhang committed
977

978
979
    AllocateBuffer(max_batch_size_, session_len_);
    AllocatePersistantBuffer(max_batch_size_);
Li Zhang's avatar
Li Zhang committed
980
981
982
}

template<typename T>
983
void LlamaBatch<T>::InitializeSampling(const GenerationState& g)
Li Zhang's avatar
Li Zhang committed
984
{
Li Zhang's avatar
Li Zhang committed
985
    NvtxScope _("InitSampling");
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
    const int batch_size = state_->active_size - g.partial;
    if (batch_size == 0) {
        return;
    }

    // Context length at initialization, will stay constant until re-initialziation
    Copy(context_length_buf_, batch_size, init_context_length_);

    Copy(context_length_buf_, batch_size, sequence_lengths_);
    // `sequence_lengths_` will be increased by dynamic decode
    // note that in decoder and in output "sequence length" has different semantic
    // - in decoder it means length of sequence that has kv cache already computed
    // - in output it means length of all tokens (the last generated token does not have k/v cache computed yet)
    invokePlusScalar(sequence_lengths_, -1, batch_size, stream_);
    sync_check_cuda_error();

    Clear(token_ids_buf_, batch_size * session_len_);
    invokeTransposeAxis01(token_ids_buf_, state_->output_ids, batch_size, session_len_, 1, stream_);
    sync_check_cuda_error();

    // token_ids_buf_[s, b]
    // ABCDe            ABCDe     e
    // ABCDEFGHIJk      ABCDEFGHIJk
    // ABCDEFGHi    ->  ABCDEFGHi i
    // ABCDEFGh         ABCDEFGh  h
    // ABCd             ABCd      d
    invokePadLastTokenIds(token_ids_buf_, init_context_length_, g.max_init_ctx_len, batch_size, stream_);
    sync_check_cuda_error();

    // seq_limit_len_, will be compared to `step` instead of `sequence_length`, so padding len should be accounted for
    for (int i = 0; i < batch_size; ++i) {
        h_seq_limit_len_[i] = state_->seq_len_limit[i] + (g.max_init_ctx_len - state_->h_context_length[i]);
    }
    Copy(h_seq_limit_len_, batch_size, seq_limit_len_);

Li Zhang's avatar
Li Zhang committed
1021
    TensorMap inputs;
Li Zhang's avatar
Li Zhang committed
1022
    for (const auto& [name, h_ptr, d_ptr] : sampling_params_) {
Li Zhang's avatar
Li Zhang committed
1023
        // find an exemplar that matches the param name
Li Zhang's avatar
Li Zhang committed
1024
        const Tensor* ptr{};
Li Zhang's avatar
Li Zhang committed
1025
        for (int i = 0; i < batch_size; ++i) {
Li Zhang's avatar
Li Zhang committed
1026
1027
            if (state_->requests[i]->inputs[rank_].isExist(name)) {
                ptr = &state_->requests[i]->inputs[rank_].at(name);
Li Zhang's avatar
Li Zhang committed
1028
1029
1030
                break;
            }
        }
Li Zhang's avatar
Li Zhang committed
1031
        // fill the batch of the param
Li Zhang's avatar
Li Zhang committed
1032
1033
1034
1035
        if (ptr) {
            const auto& ref   = *ptr;
            auto        shape = ref.shape;
            FT_CHECK(shape[0] == 1);
Li Zhang's avatar
Li Zhang committed
1036
            shape[0]                = batch_size;
Li Zhang's avatar
Li Zhang committed
1037
            const int size_in_bytes = ref.sizeBytes();
Li Zhang's avatar
Li Zhang committed
1038
            memset(h_ptr, 0, size_in_bytes * batch_size);
Li Zhang's avatar
Li Zhang committed
1039
            for (int i = 0; i < batch_size; ++i) {
1040
                FT_CHECK(state_->requests[i] != nullptr);
Li Zhang's avatar
Li Zhang committed
1041
1042
                if (state_->requests[i]->inputs[rank_].isExist(name)) {
                    Tensor& src = state_->requests[i]->inputs[rank_].at(name);
Li Zhang's avatar
Li Zhang committed
1043
                    FT_CHECK(ref.shape == src.shape);
Li Zhang's avatar
Li Zhang committed
1044
                    std::copy_n(src.getPtr<std::byte>(), size_in_bytes, h_ptr + size_in_bytes * i);
Li Zhang's avatar
Li Zhang committed
1045
1046
                }
            }
Li Zhang's avatar
Li Zhang committed
1047
1048
1049
1050
            if (d_ptr) {
                Copy(h_ptr, batch_size * size_in_bytes, d_ptr);
            }
            inputs.insert({name, {d_ptr ? MEMORY_GPU : MEMORY_CPU, ref.type, shape, d_ptr ? d_ptr : h_ptr}});
Li Zhang's avatar
Li Zhang committed
1051
            if (debug_ && rank_ == 0) {
Li Zhang's avatar
Li Zhang committed
1052
                TM_LOG_INFO("[initializeSampling] %s", format({name, inputs.at(name)}).c_str());
Li Zhang's avatar
Li Zhang committed
1053
1054
1055
1056
            }
        }
    }

Li Zhang's avatar
Li Zhang committed
1057
1058
1059
1060
1061
    // init for eos
    std::fill_n(h_end_ids_buf_, batch_size, model_->end_id_);
    Copy(h_end_ids_buf_, batch_size, d_end_ids_buf_);
    inputs.insert({"end_id", {MEMORY_GPU, TYPE_INT32, {(size_t)batch_size}, d_end_ids_buf_}});

Li Zhang's avatar
Li Zhang committed
1062
1063
    inputs_ = std::move(inputs);

Li Zhang's avatar
Li Zhang committed
1064
    model_->dynamic_decode_layer_->setup(batch_size, 1, &inputs_);
Li Zhang's avatar
Li Zhang committed
1065
1066
}

1067
template<typename T>
Li Zhang's avatar
Li Zhang committed
1068
void LlamaBatch<T>::OutputContextLogits(T*                      context_decoder_output,
1069
1070
1071
1072
1073
1074
1075
1076
                                        const std::vector<int>& indices,
                                        const std::vector<int>& lengths)
{
    std::vector<float*> output_logits;
    int                 num_token = 0;
    {
        bool is_return_logits = false;
        for (int k = 0; k < indices.size(); ++k) {
Li Zhang's avatar
Li Zhang committed
1077
            auto& request = state_->requests[indices[k]];
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
            output_logits.push_back(request->outputs[rank_].getPtr<float>("logits", nullptr));
            num_token += lengths[k];
            if (output_logits.back()) {
                is_return_logits = true;
            }
        }
        if (!is_return_logits) {
            return;
        }
    }

    if (context_logits_buf_ == nullptr) {
Li Zhang's avatar
Li Zhang committed
1090
        NcclGuard guard(model_->tensor_para_, stream_, true);
Chen Xin's avatar
Chen Xin committed
1091
        context_logits_buf_ =
Li Zhang's avatar
Li Zhang committed
1092
1093
            (float*)allocator_->malloc(sizeof(float) * model_->vocab_size_padded_ * max_context_token_num_);
        const auto tp = model_->tensor_para_.world_size_;
1094
        if (tp > 1) {
Li Zhang's avatar
Li Zhang committed
1095
1096
            FT_CHECK(model_->vocab_size_padded_ % tp == 0);
            const auto local_vocab_size = model_->vocab_size_padded_ / tp;
1097
1098
1099
1100
1101
            local_context_logits_buf_ =
                (float*)allocator_->malloc(sizeof(float) * local_vocab_size * max_context_token_num_);
        }
    }

Li Zhang's avatar
Li Zhang committed
1102
    model_->postDecodeEmbedding(context_logits_buf_, local_context_logits_buf_, context_decoder_output, num_token);
1103
1104
1105
1106
1107

    auto logits = context_logits_buf_;

    for (int k = 0; k < indices.size(); ++k) {
        if (output_logits[k]) {
Li Zhang's avatar
Li Zhang committed
1108
            Copy(logits, model_->vocab_size_ * lengths[k], output_logits[k]);
1109
        }
Li Zhang's avatar
Li Zhang committed
1110
        logits += model_->vocab_size_padded_ * lengths[k];
1111
1112
1113
    }
}

Li Zhang's avatar
Li Zhang committed
1114
template<typename T>
1115
auto LlamaBatch<T>::Finish(GenerationState& g) -> std::vector<Signal>
Li Zhang's avatar
Li Zhang committed
1116
{
Li Zhang's avatar
Li Zhang committed
1117
1118
    NvtxScope scope("Finish");
    const int batch_size = state_->active_size;
Li Zhang's avatar
Li Zhang committed
1119

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
    if (batch_size - g.partial) {
        FT_CHECK(g.step >= 0);

        // [s,b] -> [b,s] and skip padding in [context_len, max_context_len)
        invokeGatherOutput(state_->output_ids,
                           token_ids_buf_,
                           init_context_length_,
                           g.max_init_ctx_len,
                           g.step,
                           session_len_,
                           batch_size - g.partial,
                           stream_);
        sync_check_cuda_error();
    }
Li Zhang's avatar
Li Zhang committed
1134

Li Zhang's avatar
Li Zhang committed
1135
1136
    Copy(state_->output_ids, batch_size * session_len_, h_output_ids_);
    Copy(finished_buf_, batch_size, state_->h_finished);
Li Zhang's avatar
Li Zhang committed
1137
1138
    Copy(sequence_lengths_, batch_size, state_->h_context_length);

Li Zhang's avatar
Li Zhang committed
1139
    check_cuda_error(cudaStreamSynchronize(stream_));
Li Zhang's avatar
Li Zhang committed
1140

1141
1142
    // invariant: context_length = sequence_length + 1, so that h_context_length include all (including the one just
    // generated) tokens
Li Zhang's avatar
Li Zhang committed
1143
1144
    for (int i = 0; i < batch_size; ++i) {
        ++state_->h_context_length[i];
Li Zhang's avatar
Li Zhang committed
1145
    }
Li Zhang's avatar
Li Zhang committed
1146

Li Zhang's avatar
Li Zhang committed
1147
1148
    {  // set output tokens ids and sequence length
        int* output_ptr = h_output_ids_;
1149
        for (int i = 0; i < batch_size - g.partial; ++i) {
Li Zhang's avatar
Li Zhang committed
1150
            if (state_->requests[i] && (state_->requests[i]->stream_cb || state_->h_finished[i])) {
1151
1152
1153
1154
1155
1156
                auto      output_ids = state_->requests[i]->outputs[rank_].getPtr<int>("output_ids");
                auto      output_len = state_->requests[i]->outputs[rank_].getPtr<int>("sequence_length");
                const int count      = state_->h_context_length[i];
                // TODO: sync history output tokens at when receiving the request and copy the last token here
                std::copy(output_ptr, output_ptr + count, output_ids);
                *output_len = count;
Li Zhang's avatar
Li Zhang committed
1157
            }
Li Zhang's avatar
Li Zhang committed
1158
            output_ptr += session_len_;
Li Zhang's avatar
Li Zhang committed
1159
        }
Chen Xin's avatar
Chen Xin committed
1160
    }
Li Zhang's avatar
Li Zhang committed
1161
1162

    if (debug_ && rank_ == 0) {
Li Zhang's avatar
Li Zhang committed
1163
        for (int i = 0; i < batch_size; ++i) {
1164
1165
1166
1167
1168
1169
1170
1171
1172
            // ss << (i ? ", " : "") << "(" << state_->h_context_length[i] << "," << state_->h_finished[i] << ")";
            std::vector<int> tokens(state_->h_context_length[i]);
            Copy(state_->output_ids + i * session_len_, tokens.size(), tokens.data());
            cudaStreamSynchronize(stream_);
            std::stringstream ss;
            for (const auto& t : tokens) {
                ss << " " << t;
            }
            TM_LOG_INFO("[Finish] slot %d, tokens [%s]", i, ss.str().c_str());
Li Zhang's avatar
Li Zhang committed
1173
1174
1175
        }
    }

Li Zhang's avatar
Li Zhang committed
1176
1177
    std::vector<Signal> signals;
    {
Li Zhang's avatar
Li Zhang committed
1178
        NvtxScope _("stream_and_completion_signal");
1179
        for (int i = 0; i < batch_size - g.partial; ++i) {
Li Zhang's avatar
Li Zhang committed
1180
1181
1182
1183
            if (state_->requests[i]) {
                if (state_->h_finished[i]) {
                    // Interrupt finished sequences and move the request handle into the signal closure
                    signals.push_back(Interrupt(i));
1184
                    ++g.finished_count;
Li Zhang's avatar
Li Zhang committed
1185
1186
1187
1188
1189
1190
1191
1192
1193
                }
                else if (state_->requests[i]->stream_cb) {
                    // Create signals by copying the request handles for non-finished streaming requests
                    signals.push_back([this, r = state_->requests[i]] {
                        if (rank_ == 0) {
                            r->stream_cb(&r->outputs[rank_].get());
                        }
                    });
                }
Li Zhang's avatar
Li Zhang committed
1194
1195
            }
        }
1196
        if (g.finished_count) {
Li Zhang's avatar
Li Zhang committed
1197
1198
1199
            // synchronize for interrupted sequences
            check_cuda_error(cudaStreamSynchronize(stream_));
        }
Li Zhang's avatar
Li Zhang committed
1200
    }
1201
1202
1203
1204
1205
1206
1207

    if (g.partial) {
        const int i = batch_size - 1;
        // recover full context length of partial
        state_->h_context_length[i] = g.partial_context_legnth;
    }

Li Zhang's avatar
Li Zhang committed
1208
    return signals;
Li Zhang's avatar
Li Zhang committed
1209
1210
1211
}

template<typename T>
Li Zhang's avatar
Li Zhang committed
1212
auto LlamaBatch<T>::Interrupt(int index, bool force_stop, bool force_end) -> Signal
Li Zhang's avatar
Li Zhang committed
1213
1214
{
    if (rank_ == 0) {
Li Zhang's avatar
Li Zhang committed
1215
        TM_LOG_INFO("[Interrupt] slot = %d, id = %lu", index, (long)state_->requests[index]->id);
Li Zhang's avatar
Li Zhang committed
1216
1217
1218
    }

    if (debug_ && rank_ == 0) {
Li Zhang's avatar
Li Zhang committed
1219
1220
        std::vector<int> tokens(state_->h_context_length[index]);
        Copy(state_->output_ids + index * session_len_, tokens.size(), tokens.data());
Li Zhang's avatar
Li Zhang committed
1221
1222
1223
1224
1225
        cudaStreamSynchronize(stream_);
        std::stringstream ss;
        for (const auto& t : tokens) {
            ss << " " << t;
        }
Li Zhang's avatar
Li Zhang committed
1226
        TM_LOG_INFO("[Interrupt] slot %d, tokens [%s]", index, ss.str().c_str());
Li Zhang's avatar
Li Zhang committed
1227
1228
    }

Li Zhang's avatar
Li Zhang committed
1229
1230
1231
    if (state_->requests[index]->end_flag || force_end) {
        // Sequence is ending this round or a stop request is issued to end it
        FT_CHECK(sequence_manager_->Erase(state_->requests[index]->id));
Li Zhang's avatar
Li Zhang committed
1232
1233
    }
    else {
1234
        const int output_len = state_->h_context_length[index];
Li Zhang's avatar
Li Zhang committed
1235
        auto&     seq        = *state_->sequences[index];
Li Zhang's avatar
Li Zhang committed
1236

Li Zhang's avatar
Li Zhang committed
1237
        // Update token IDs
Li Zhang's avatar
Li Zhang committed
1238
1239
        seq.tokens.resize(output_len);
        const auto output_ids_data = state_->requests[index]->outputs[rank_].at("output_ids").getPtr<int>();
Li Zhang's avatar
Li Zhang committed
1240
        std::copy_n(output_ids_data, output_len, seq.tokens.data());
Li Zhang's avatar
Li Zhang committed
1241

Li Zhang's avatar
Li Zhang committed
1242
1243
1244
1245
        // Save random state in host memory
        seq.random_state.resize(sizeof(curandState_t));
        // This async copy must be synchronized by the caller
        Copy(state_->curand_state + index, 1, (curandState_t*)seq.random_state.data());
Li Zhang's avatar
Li Zhang committed
1246

Li Zhang's avatar
Li Zhang committed
1247
        // Set unlock flag for corresponding blocks, will be unlocked in the next `Materialize()`
Li Zhang's avatar
Li Zhang committed
1248
1249
1250
1251
        sequence_manager_->UpdateAndSetUnlock(seq);
    }

    state_->sequences[index] = nullptr;
Li Zhang's avatar
Li Zhang committed
1252
1253
1254
1255
1256
1257
1258

    // move the request handle into the signal
    return [this, r = std::move(state_->requests[index])] {
        if (rank_ == 0) {
            r->signal.set_value(0);
        }
    };
Li Zhang's avatar
Li Zhang committed
1259
1260
1261
1262
1263
}

template<typename T>
void LlamaBatch<T>::InternalThreadEntry(int device_id)
{
Li Zhang's avatar
Li Zhang committed
1264
    // TM_LOG_INFO("[InternalThreadEntry] %d", (int)rank_);
Li Zhang's avatar
Li Zhang committed
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
    check_cuda_error(cudaSetDevice(device_id));

    auto& shared_state = model_->shared_state_;

    auto& request_queue  = shared_state->request_queue;
    auto& infer_requests = shared_state->infer_requests;
    auto& stop_requests  = shared_state->stop_requests;

    GenerationState g{};

Li Zhang's avatar
Li Zhang committed
1275
1276
1277
    constexpr int request_interval = 1;
    long          request_counter  = 0;

Li Zhang's avatar
Li Zhang committed
1278
1279
    while (1) {
        if (rank_ == 0) {
1280
            const int  free_slot_count = max_batch_size_ - state_->size + g.finished_count;
Li Zhang's avatar
Li Zhang committed
1281
            const bool is_empty        = (free_slot_count == max_batch_size_);
Li Zhang's avatar
Li Zhang committed
1282
1283
1284
1285
1286
1287
1288
1289
            stop_requests.clear();
            infer_requests.clear();
            if (is_empty || request_counter % request_interval == 0) {
                // Block if batch is empty
                request_queue.dequeue(stop_requests, infer_requests, free_slot_count, is_empty, shared_state->abort);
                if (!shared_state->abort) {
                    RejectInvalidRequests(stop_requests, infer_requests);
                }
Li Zhang's avatar
Li Zhang committed
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
            }
        }

        NvtxScope scope("mainloop");

        // wait while rank-0 is dequeueing
        shared_state->barrier->wait();

        if (shared_state->abort) {
            TM_LOG_INFO("[InternalThreadEntry] stop requested.");
            return;
        }

        auto signals = ProcessStopRequests(stop_requests);

Li Zhang's avatar
Li Zhang committed
1305
        // Shared `priority` field will be assigned by rank-0
Li Zhang's avatar
Li Zhang committed
1306
1307
        ProcessInferRequests(infer_requests);

Li Zhang's avatar
Li Zhang committed
1308
        // Wait while shared `requests` is being used
Li Zhang's avatar
Li Zhang committed
1309
1310
        shared_state->barrier->wait();

Li Zhang's avatar
Li Zhang committed
1311
1312
        SendSignals(std::move(signals));

1313
        Initialize(g);
Li Zhang's avatar
Li Zhang committed
1314

1315
        FT_CHECK(step_length_ == 1);
Li Zhang's avatar
Li Zhang committed
1316

1317
        if (state_->active_size) {
Li Zhang's avatar
Li Zhang committed
1318
            for (int i = 0; i < step_length_; ++i) {
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
                //
                auto cont = Forward(g, i);
                //
                if (auto signals = Finish(g); !signals.empty()) {
                    if (g.finished_count) {
                        // Finished requests and corresponding output tensors will be released when notified
                        // wait for all ranks to ensure no rank (except for output thread) will access related
                        // resources
                        shared_state->barrier->wait();
                    }
                    SendSignals(std::move(signals));
Li Zhang's avatar
Li Zhang committed
1330
                }
1331
1332
                if (!cont) {  // early exit
                    break;
Li Zhang's avatar
Li Zhang committed
1333
1334
                }
            }
Li Zhang's avatar
Li Zhang committed
1335
        }
Li Zhang's avatar
Li Zhang committed
1336
1337

        ++request_counter;
Li Zhang's avatar
Li Zhang committed
1338
1339
    }

Li Zhang's avatar
Li Zhang committed
1340
1341
1342
1343
    FT_CHECK(0);
}

template<typename T>
Li Zhang's avatar
Li Zhang committed
1344
void LlamaBatch<T>::SendSignals(std::vector<Signal> signals)
Li Zhang's avatar
Li Zhang committed
1345
{
Li Zhang's avatar
Li Zhang committed
1346
1347
1348
1349
1350
1351
1352
1353
    if (rank_ != 0 || signals.empty()) {
        return;
    }
    {
        std::lock_guard lock{output_mutex_};
        output_signals_.insert(output_signals_.end(),  //
                               std::move_iterator{signals.begin()},
                               std::move_iterator{signals.end()});
Li Zhang's avatar
Li Zhang committed
1354
    }
Li Zhang's avatar
Li Zhang committed
1355
    output_cv_.notify_one();
Li Zhang's avatar
Li Zhang committed
1356
1357
1358
1359
1360
}

template<typename T>
void LlamaBatch<T>::Start()
{
Li Zhang's avatar
Li Zhang committed
1361
    TM_LOG_INFO("LlamaBatch<T>::Start()");
Li Zhang's avatar
Li Zhang committed
1362
1363
1364
    int device_id = -1;
    check_cuda_error(cudaGetDevice(&device_id));
    internal_thread_ = std::thread(&LlamaBatch::InternalThreadEntry, this, device_id);
Li Zhang's avatar
Li Zhang committed
1365
    if (rank_ == 0) {
Li Zhang's avatar
Li Zhang committed
1366
        output_thread_ = std::thread(&LlamaBatch::OutputThreadEntry, this);
Li Zhang's avatar
Li Zhang committed
1367
    }
Li Zhang's avatar
Li Zhang committed
1368
}
Li Zhang's avatar
Li Zhang committed
1369

Li Zhang's avatar
Li Zhang committed
1370
1371
1372
1373
template<typename T>
void LlamaBatch<T>::OutputThreadEntry()
{
    while (true) {
Li Zhang's avatar
Li Zhang committed
1374
        std::vector<Signal> signals;
Li Zhang's avatar
Li Zhang committed
1375
        {
Li Zhang's avatar
Li Zhang committed
1376
            // Wait for signals to come
Li Zhang's avatar
Li Zhang committed
1377
            std::unique_lock lock(output_mutex_);
Li Zhang's avatar
Li Zhang committed
1378
            output_cv_.wait(lock, [&] { return !output_signals_.empty() || output_stop_token_; });
Li Zhang's avatar
Li Zhang committed
1379
1380
1381
1382
            if (output_stop_token_) {
                TM_LOG_INFO("[OutputThreadEntry] stop requested.");
                return;
            }
Li Zhang's avatar
Li Zhang committed
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
            signals = std::move(output_signals_);
        }
        if (rank_ == 0 && model_->ffi_lock_) {
            model_->ffi_lock_(1);
        }
        // invoke stream cbs & signals
        for (const auto& s : signals) {
            s();
        }
        if (rank_ == 0 && model_->ffi_lock_) {
            model_->ffi_lock_(0);
Li Zhang's avatar
Li Zhang committed
1394
1395
        }
    }
Li Zhang's avatar
Li Zhang committed
1396
1397
}

1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
template<typename T>
bool LlamaBatch<T>::Forward(GenerationState& g, int iter)
{
    NvtxScope _("Forward");

    FT_CHECK(max_context_token_num_ >= max_batch_size_);

    const int active_size = state_->active_size;

    constexpr int kLogInterval = 10;
    if (rank_ == 0 && (g.step - 1) % kLogInterval == 0) {
        TM_LOG_INFO("------------------------- step = %d -------------------------", g.step - 1);
    }

    int               pf_offset = -1;
    std::vector<int*> input_d_ptrs(active_size);

    if (iter == 0) {  // The first iter may have pre-fill tokens
        for (int i = 0; i < active_size; ++i) {
            const auto& seq = *state_->sequences[i];
            // const int   missing    = state_->h_context_length[i] - seq.cache_len;
            FT_CHECK(seq.input_length >= 1);
            h_input_length_buf_[i] = seq.input_length;
            input_d_ptrs[i]        = state_->output_ids + i * session_len_ + seq.cache_len;
            if (seq.input_length > 1 && pf_offset < 0) {
                pf_offset = i;
            }
        }
        if (pf_offset < 0) {
            pf_offset = active_size;
        }
    }
    else {
        for (int i = 0; i < active_size; ++i) {
            h_input_length_buf_[i] = 1;
            input_d_ptrs[i]        = state_->output_ids + i * session_len_ + state_->h_context_length[i] - 1;
        }
        pf_offset = active_size;
    }

    // These buffers are only accessed when there are prefill workloads
    if (pf_offset != active_size) {
        Copy(state_->h_context_length, active_size, context_length_buf_);
        Copy(h_input_length_buf_, active_size, input_length_buf_);
    }

    // Find mini-batch offsets: input length > 1 ? prefill() : decode()
    // Constraints on mini-batches
    // - `context_decoder_input` and `context_decoder_output` can hold `max_context_token_num_` tokens w/o padding
    // - prefill() use `tmp_k_cache_buf_` and `tmp_k_cache_buf_`, they can hold `max_context_token_num_` tokens
    //     but each sequence is padded to the maximum context length in the batch
    std::vector<int> offsets{0};
    std::vector<int> max_context_cnts;
    // initialize first mini-batch with decode tokens
    int accum_size        = pf_offset;
    int accum_token_count = pf_offset;
    int max_context_count = 0;
    for (int i = pf_offset; i < active_size; ++i) {
        FT_CHECK(iter == 0);
        int size          = accum_size + 1;
        int input_count   = accum_token_count + h_input_length_buf_[i];
        int context_count = std::max(max_context_count, state_->h_context_length[i]);
        // correct pre-fill batch size for the first batch
        int pf_size = offsets.size() == 1 ? size - pf_offset : size;
        // we have `cu_seqlens` on q so no padding for input is needed
        // prefill kernels are expecting uniform k/v cache length -> `max_context_count * size <=
        // max_context_token_num_`
        if (input_count <= max_context_token_num_ && context_count * pf_size <= max_context_token_num_) {
            accum_size        = size;
            accum_token_count = input_count;
            max_context_count = context_count;
        }
        else {
            offsets.push_back(i);
            max_context_cnts.push_back(max_context_count);
            accum_size        = 1;
            accum_token_count = h_input_length_buf_[i];
            max_context_count = state_->h_context_length[i];
        }
    }
    offsets.push_back(active_size);
    max_context_cnts.push_back(max_context_count);

    // forward on mini-batches
    for (int p = 0; p < (int)offsets.size() - 1; ++p) {
        int  first           = offsets[p];
        int  last            = offsets[p + 1];
        int  mini_batch_size = last - first;
        T*   k_ptr           = tmp_k_cache_buf_;
        T*   v_ptr           = tmp_v_cache_buf_;
        int  max_input_len{};
        auto input_ids = context_decoder_ids_buf_;
        //
        std::vector<int> decode_indices{};
        std::vector<int> decode_lengths{};

Chen Xin's avatar
Chen Xin committed
1494
1495
        std::vector<const Sequence*> sequences;

1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
        BatchedCopy batched_copy;
        for (int i = first; i < last; ++i) {
            input_ids = batched_copy.Add(input_d_ptrs[i], h_input_length_buf_[i], input_ids);
            dbg(i, h_input_length_buf_[i]);
            // allocate tmp k/v buffer for pre-fill sequences
            if (i < pf_offset) {
                h_tmp_k_ptrs_[i] = h_tmp_v_ptrs_[i] = nullptr;
            }
            else {
                h_tmp_k_ptrs_[i] = k_ptr;
                h_tmp_v_ptrs_[i] = v_ptr;
                k_ptr += model_->local_kv_head_num_ * max_context_cnts[p] * model_->size_per_head_;
                v_ptr += model_->local_kv_head_num_ * max_context_cnts[p] * model_->size_per_head_;
            }
            decode_indices.push_back(i);
            decode_lengths.push_back(h_input_length_buf_[i]);
Chen Xin's avatar
Chen Xin committed
1512
            sequences.push_back(state_->sequences[i]);
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
            max_input_len = std::max(max_input_len, h_input_length_buf_[i]);
        }
        int token_count = input_ids - context_decoder_ids_buf_;

        batched_copy.Submit(stream_);

        Copy(h_tmp_k_ptrs_ + first, mini_batch_size, tmp_k_ptrs_ + first);
        Copy(h_tmp_v_ptrs_ + first, mini_batch_size, tmp_v_ptrs_ + first);

        const int dc_batch_size = p ? 0 : pf_offset;
        const int pf_batch_size = mini_batch_size - dc_batch_size;

        if (rank_ == 0) {
            if (pf_batch_size) {
                TM_LOG_INFO("[Forward] [%d, %d), dc_bsz = %d, pf_bsz = %d, n_tok = %d, max_q = %d, max_k = %d",
                            first,
                            last,
                            dc_batch_size,
                            pf_batch_size,
                            token_count,
                            max_input_len,
                            max_context_cnts[p]);
            }
        }

        model_->forwardUnified(decoder_output_buf_ + first * model_->hidden_units_,
                               context_decoder_output_buf_,  // temp
                               context_decoder_input_buf_,   // temp
                               (void**)k_block_ptrs_,
                               (void**)v_block_ptrs_,
                               context_decoder_ids_buf_,  // temp
                               cu_block_counts_ + first,
                               rope_theta_ + first,
                               finished_buf_ + first,
                               input_length_buf_ + first,
                               context_length_buf_ + first,
                               (T**)tmp_k_ptrs_ + first,
                               (T**)tmp_v_ptrs_ + first,
                               token_count,
                               dc_batch_size,
                               g.step,
                               g.sum_seq_len,
                               g.max_seq_len,
                               pf_batch_size,
                               max_input_len,
                               max_context_cnts[p],
Chen Xin's avatar
Chen Xin committed
1559
1560
1561
                               max_context_cnts[p],
                               h_input_length_buf_ + first,
                               sequences.data());
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631

        if (iter == 0) {
            // compute logits of inputs if requested
            OutputContextLogits(context_decoder_output_buf_, decode_indices, decode_lengths);
        }
    }

    std::fill(h_input_length_buf_, h_input_length_buf_ + active_size, 0);

    // `SequenceManager` needs real-time value of cache length
    for (int i = 0; i < active_size; ++i) {
        if (state_->requests[i]) {
            FT_CHECK(state_->sequences[i]);
            state_->sequences[i]->cache_len += state_->sequences[i]->input_length;
        }
    }

    bool should_stop{};

    if (active_size > g.partial) {
        model_->postDecodeEmbedding(logits_buf_, local_logits_buf_, decoder_output_buf_, active_size - g.partial);

        FT_CHECK(g.step >= 0);

        // TM_LOG_INFO("dyn decode bsz %d, partial %d", active_size, g.partial);

        // stop-words & bad-words require the matched tokens to be contiguous, so item size > 1 is
        // not supported yet.
        model_->dynamicDecode(token_ids_buf_,
                              finished_buf_,
                              sequence_lengths_,
                              &should_stop,
                              state_->curand_state,
                              &inputs_,
                              &outputs_,
                              logits_buf_,
                              seq_limit_len_,
                              init_context_length_,
                              d_end_ids_buf_,
                              g.step,
                              0,
                              g.max_init_ctx_len,
                              session_len_ * 2,
                              active_size - g.partial);
    }

    if (debug_ && rank_ == 0) {
        std::vector<int> curr(active_size);
        Copy(token_ids_buf_ + g.step * active_size, active_size, curr.data());
        cudaStreamSynchronize(stream_);
        std::stringstream scurr;
        for (int k = 0; k < curr.size(); ++k) {
            scurr << std::setw(6) << curr[k];
        }
        TM_LOG_INFO("[Forward] step = %d, [%s]", g.step - 1, scurr.str().c_str());
    }

    // check_cuda_error(cudaStreamSynchronize(stream_));

    ////////////////////////////////////////////////
    /// ! increase the counters
    g.step += 1;
    g.max_seq_len += 1;
    g.sum_seq_len += state_->active_size;

    // PrintDecodeTokens(token_ids_buf_, g.step, active_size, stream_, "Forward");

    return !should_stop;
}

Li Zhang's avatar
Li Zhang committed
1632
1633
1634
template class LlamaBatch<half>;
template class LlamaBatch<float>;

lvhan028's avatar
lvhan028 committed
1635
}  // namespace turbomind