README.md 8.86 KB
Newer Older
lvhan028's avatar
lvhan028 committed
1
<div align="center">
lvhan028's avatar
lvhan028 committed
2
  <img src="resources/lmdeploy-logo.png" width="450"/>
lvhan028's avatar
lvhan028 committed
3
4
5
6
7

English | [简体中文](README_zh-CN.md)

</div>

8
<p align="center">
vansin's avatar
vansin committed
9
    👋 join us on <a href="https://twitter.com/intern_lm" target="_blank">Twitter</a>, <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://r.vansin.top/?r=internwx" target="_blank">WeChat</a>
10
</p>
lvhan028's avatar
lvhan028 committed
11

12
13
______________________________________________________________________

q.yao's avatar
q.yao committed
14
## News 🎉
15

pppppM's avatar
pppppM committed
16
17
18
- \[2023/08\] TurboMind supports 4-bit inference, 2.4x faster than FP16, the fastest open-source implementation🚀.
- \[2023/08\] LMDeploy has launched on the [HuggingFace Hub](https://huggingface.co/lmdeploy), providing ready-to-use 4-bit models.
- \[2023/08\] LMDeploy supports 4-bit quantization using the [AWQ](https://arxiv.org/abs/2306.00978) algorithm.
19
20
- \[2023/07\] TurboMind supports Llama-2 70B with GQA.
- \[2023/07\] TurboMind supports Llama-2 7B/13B.
q.yao's avatar
q.yao committed
21
- \[2023/07\] TurboMind supports tensor-parallel inference of InternLM.
22
23
24

______________________________________________________________________

lvhan028's avatar
lvhan028 committed
25
26
## Introduction

lvhan028's avatar
lvhan028 committed
27
28
LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the [MMRazor](https://github.com/open-mmlab/mmrazor) and [MMDeploy](https://github.com/open-mmlab/mmdeploy) teams. It has the following core features:

tpoisonooo's avatar
tpoisonooo committed
29
- **Efficient Inference Engine (TurboMind)**: Based on [FasterTransformer](https://github.com/NVIDIA/FasterTransformer), we have implemented an efficient inference engine - TurboMind, which supports the inference of LLaMA and its variant models on NVIDIA GPUs.
lvhan028's avatar
lvhan028 committed
30

31
- **Interactive Inference Mode**: By caching the k/v of attention during multi-round dialogue processes, it remembers dialogue history, thus avoiding repetitive processing of historical sessions.
lvhan028's avatar
lvhan028 committed
32

tpoisonooo's avatar
tpoisonooo committed
33
- **Multi-GPU Model Deployment and Quantization**: We provide comprehensive model deployment and quantification support, and have been validated at different scales.
34
35

- **Persistent Batch Inference**: Further optimization of model execution efficiency.
lvhan028's avatar
lvhan028 committed
36

pppppM's avatar
pppppM committed
37
![PersistentBatchInference](https://github.com/InternLM/lmdeploy/assets/67539920/e3876167-0671-44fc-ac52-5a0f9382493e)
lvhan028's avatar
lvhan028 committed
38

pppppM's avatar
pppppM committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
## Supported Models

`LMDeploy` has two inference backends, `Pytorch` and `TurboMind`.

### TurboMind

> **Note**<br />
> W4A16 inference requires Nvidia GPU with Ampere architecture or above.

|  Models  | Tensor Parallel | FP16 | KV INT8 | W4A16 | W8A8 |
| :------: | :-------------: | :--: | :-----: | :---: | :--: |
|  Llama   |       Yes       | Yes  |   Yes   |  Yes  |  No  |
|  Llama2  |       Yes       | Yes  |   Yes   |  Yes  |  No  |
| InternLM |       Yes       | Yes  |   Yes   |  Yes  |  No  |

### Pytorch

|  Models  | Tensor Parallel | FP16 | KV INT8 | W4A16 | W8A8 |
| :------: | :-------------: | :--: | :-----: | :---: | :--: |
|  Llama   |       Yes       | Yes  |   No    |  No   |  No  |
|  Llama2  |       Yes       | Yes  |   No    |  No   |  No  |
| InternLM |       Yes       | Yes  |   No    |  No   |  No  |

lvhan028's avatar
lvhan028 committed
62
63
## Performance

64
**Case I**: output token throughput with fixed input token and output token number (1, 2048)
lvhan028's avatar
lvhan028 committed
65

66
**Case II**: request throughput with real conversation data
lvhan028's avatar
lvhan028 committed
67

68
Test Setting: LLaMA-7B, NVIDIA A100(80G)
lvhan028's avatar
lvhan028 committed
69

70
71
The output token throughput of TurboMind exceeds 2000 tokens/s, which is about 5% - 15% higher than DeepSpeed overall and outperforms huggingface transformers by up to 2.3x.
And the request throughput of TurboMind is 30% higher than vLLM.
lvhan028's avatar
lvhan028 committed
72

73
![benchmark](https://github.com/InternLM/lmdeploy/assets/4560679/7775c518-608e-4e5b-be73-7645a444e774)
lvhan028's avatar
lvhan028 committed
74

lvhan028's avatar
lvhan028 committed
75
76
77
## Quick Start

### Installation
lvhan028's avatar
lvhan028 committed
78

79
Install lmdeploy with pip ( python 3.8+) or [from source](./docs/en/build.md)
lvhan028's avatar
lvhan028 committed
80
81

```shell
lvhan028's avatar
lvhan028 committed
82
pip install lmdeploy
lvhan028's avatar
lvhan028 committed
83
84
```

lvhan028's avatar
lvhan028 committed
85
### Deploy InternLM
lvhan028's avatar
lvhan028 committed
86

lvhan028's avatar
lvhan028 committed
87
#### Get InternLM model
lvhan028's avatar
lvhan028 committed
88
89

```shell
lvhan028's avatar
lvhan028 committed
90
# 1. Download InternLM model
lvhan028's avatar
lvhan028 committed
91

pppppM's avatar
pppppM committed
92
93
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
del-zhenwu's avatar
del-zhenwu committed
94
git clone https://huggingface.co/internlm/internlm-chat-7b /path/to/internlm-chat-7b
pppppM's avatar
pppppM committed
95
96
97
98
99

# if you want to clone without large files – just their pointers
# prepend your git clone with the following env var:
GIT_LFS_SKIP_SMUDGE=1

lvhan028's avatar
lvhan028 committed
100
# 2. Convert InternLM model to turbomind's format, which will be in "./workspace" by default
101
python3 -m lmdeploy.serve.turbomind.deploy internlm-chat-7b /path/to/internlm-chat-7b
lvhan028's avatar
lvhan028 committed
102
103
104

```

lvhan028's avatar
lvhan028 committed
105
#### Inference by TurboMind
lvhan028's avatar
lvhan028 committed
106
107

```shell
lvhan028's avatar
lvhan028 committed
108
python -m lmdeploy.turbomind.chat ./workspace
lvhan028's avatar
lvhan028 committed
109
110
```

111
112
113
114
115
116
117
> **Note**<br />
> When inferring with FP16 precision, the InternLM-7B model requires at least 15.7G of GPU memory overhead on TurboMind. <br />
> It is recommended to use NVIDIA cards such as 3090, V100, A100, etc.
> Disable GPU ECC can free up 10% memory, try `sudo nvidia-smi --ecc-config=0` and reboot system.

> **Note**<br />
> Tensor parallel is available to perform inference on multiple GPUs. Add `--tp=<num_gpu>` on `chat` to enable runtime TP.
lvhan028's avatar
lvhan028 committed
118

119
120
121
122
123
124
125
126
127
#### Serving with gradio

```shell
python3 -m lmdeploy.serve.gradio.app ./workspace
```

![](https://github.com/InternLM/lmdeploy/assets/67539920/08d1e6f2-3767-44d5-8654-c85767cec2ab)

#### Serving with Triton Inference Server
lvhan028's avatar
lvhan028 committed
128

lvhan028's avatar
lvhan028 committed
129
Launch inference server by:
lvhan028's avatar
lvhan028 committed
130
131

```shell
lvhan028's avatar
lvhan028 committed
132
bash workspace/service_docker_up.sh
lvhan028's avatar
lvhan028 committed
133
134
```

lvhan028's avatar
lvhan028 committed
135
Then, you can communicate with the inference server by command line,
lvhan028's avatar
lvhan028 committed
136
137

```shell
138
python3 -m lmdeploy.serve.client {server_ip_addresss}:33337
lvhan028's avatar
lvhan028 committed
139
140
```

lvhan028's avatar
lvhan028 committed
141
or webui,
AllentDan's avatar
AllentDan committed
142

vansin's avatar
vansin committed
143
```shell
144
python3 -m lmdeploy.serve.gradio.app {server_ip_addresss}:33337
AllentDan's avatar
AllentDan committed
145
146
```

147
For the deployment of other supported models, such as LLaMA, LLaMA-2, vicuna and so on, you can find the guide from [here](docs/en/serving.md)
lvhan028's avatar
lvhan028 committed
148

WRH's avatar
WRH committed
149
150
### Inference with PyTorch

151
For detailed instructions on Inference pytorch models, see [here](docs/en/pytorch.md).
152

WRH's avatar
WRH committed
153
154
155
#### Single GPU

```shell
WRH's avatar
WRH committed
156
python3 -m lmdeploy.pytorch.chat $NAME_OR_PATH_TO_HF_MODEL \
WRH's avatar
WRH committed
157
158
159
160
161
162
163
164
165
    --max_new_tokens 64 \
    --temperture 0.8 \
    --top_p 0.95 \
    --seed 0
```

#### Tensor Parallel with DeepSpeed

```shell
WRH's avatar
WRH committed
166
deepspeed --module --num_gpus 2 lmdeploy.pytorch.chat \
WRH's avatar
WRH committed
167
168
169
170
171
172
173
    $NAME_OR_PATH_TO_HF_MODEL \
    --max_new_tokens 64 \
    --temperture 0.8 \
    --top_p 0.95 \
    --seed 0
```

174
175
176
177
178
179
You need to install deepspeed first to use this feature.

```
pip install deepspeed
```

180
181
## Quantization

pppppM's avatar
pppppM committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
### Step 1. Obtain Quantization Parameters

First, run the quantization script to obtain the quantization parameters.

> After execution, various parameters needed for quantization will be stored in `$WORK_DIR`; these will be used in the following steps..

```
python3 -m lmdeploy.lite.apis.calibrate \
  --model $HF_MODEL \
  --calib_dataset 'c4' \             # Calibration dataset, supports c4, ptb, wikitext2, pileval
  --calib_samples 128 \              # Number of samples in the calibration set, if memory is insufficient, you can appropriately reduce this
  --calib_seqlen 2048 \              # Length of a single piece of text, if memory is insufficient, you can appropriately reduce this
  --work_dir $WORK_DIR \             # Folder storing Pytorch format quantization statistics parameters and post-quantization weight

```

### Step 2. Actual Model Quantization

`LMDeploy` supports INT4 quantization of weights and INT8 quantization of KV Cache. Run the corresponding script according to your needs.

#### Weight INT4 Quantization

LMDeploy uses AWQ algorithm for model weight quantization

> Requires input from the $WORK_DIR of step 1, and the quantized weights will also be stored in this folder.

```
python3 -m lmdeploy.lite.apis.auto_awq \
AllentDan's avatar
AllentDan committed
210
  --model $HF_MODEL \
pppppM's avatar
pppppM committed
211
212
213
214
215
216
217
  --w_bits 4 \                       # Bit number for weight quantization
  --w_group_size 128 \               # Group size for weight quantization statistics
  --work_dir $WORK_DIR \             # Directory saving quantization parameters from Step 1
```

#### KV Cache INT8 Quantization

218
In fp16 mode, kv_cache int8 quantization can be enabled, and a single card can serve more users.
tpoisonooo's avatar
tpoisonooo committed
219
First execute the quantization script, and the quantization parameters are stored in the `workspace/triton_models/weights` transformed by `deploy.py`.
220
221
222

```
python3 -m lmdeploy.lite.apis.kv_qparams \
pppppM's avatar
pppppM committed
223
224
225
226
  --work_dir $WORK_DIR \             # Directory saving quantization parameters from Step 1
  --turbomind_dir $TURBOMIND_DIR \
  --kv_sym False \                   # Whether to use symmetric or asymmetric quantization.
  --num_tp 1 \                       # The number of GPUs used for tensor parallelism
227
228
```

tpoisonooo's avatar
tpoisonooo committed
229
Then adjust `workspace/triton_models/weights/config.ini`
lvhan028's avatar
lvhan028 committed
230

lvhan028's avatar
lvhan028 committed
231
232
- `use_context_fmha` changed to 0, means off
- `quant_policy` is set to 4. This parameter defaults to 0, which means it is not enabled
lvhan028's avatar
lvhan028 committed
233

234
Here is [quantization test results](./docs/en/quantization.md).
235

236
> **Warning**<br />
tpoisonooo's avatar
tpoisonooo committed
237
> runtime Tensor Parallel for quantilized model is not available. Please setup `--tp` on `deploy` to enable static TP.
238

lvhan028's avatar
lvhan028 committed
239
## Contributing
lvhan028's avatar
lvhan028 committed
240

lvhan028's avatar
lvhan028 committed
241
We appreciate all contributions to LMDeploy. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
242

lvhan028's avatar
lvhan028 committed
243
244
245
## Acknowledgement

- [FasterTransformer](https://github.com/NVIDIA/FasterTransformer)
pppppM's avatar
pppppM committed
246
- [llm-awq](https://github.com/mit-han-lab/llm-awq)
lvhan028's avatar
lvhan028 committed
247
248
249
250

## License

This project is released under the [Apache 2.0 license](LICENSE).