llama_kernels.h 6.33 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
// Copyright (c) OpenMMLab. All rights reserved.

#pragma once

lvhan028's avatar
lvhan028 committed
5
6
7
#include "src/turbomind/kernels/gpt_kernels.h"
#include "src/turbomind/utils/cuda_bf16_wrapper.h"
#include "src/turbomind/utils/cuda_utils.h"
Li Zhang's avatar
Li Zhang committed
8
9
10
11
12
#include <assert.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <numeric>

lvhan028's avatar
lvhan028 committed
13
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

template<typename T>
void invokeRootMeanSquareNorm(T* out, const T* input, const T* scale, float eps, int m, int n, cudaStream_t stream);

template<typename T>
void invokeAddResidual(T* out, const T* in, int m, int n, cudaStream_t stream);

void invokeFixInputIds(int*         ids,
                       const int*   input_ids,
                       const int*   input_lengths,
                       int          batch_size,
                       int          seq_len,
                       int          max_input_len,
                       cudaStream_t st);

template<typename T>
void invokeSliceCausalMask(T* mask, int seq_len, int key_len, int step, int batch_size, cudaStream_t stream);

template<typename T>
void invokeCreateCausalMasks(
    T* mask, const int* q_lens, const int* k_lens, int max_q_len, int max_k_len, int batch_size, cudaStream_t stream);

template<typename T>
void invokeExtendKVCache(T**          k_dst,
                         T**          v_dst,
                         size_t       layer_offset,
                         const T*     k_src,
                         const T*     v_src,
                         int          batch_size,
                         const int*   query_length,
                         int          max_q_len,
                         const int*   history_length,
                         int          max_seq_len,
                         int          size_per_head,
                         int          local_head_num,
49
50
51
                         cudaStream_t stream,
                         int          quant,
                         const float* kv_scale);
Li Zhang's avatar
Li Zhang committed
52
53
54
55
56
57
58
59
60
61
62
63
64

template<typename T>
void invokeTransposeKVCache(T*           key_cache_trans,
                            T*           val_cache_trans,
                            const T**    key_cache,
                            const T**    val_cache,
                            size_t       layer_offset,
                            int          batch_size,
                            const int*   key_length,
                            int          max_kv_len,
                            int          max_seq_len,
                            int          size_per_head,
                            int          head_num,
65
                            int          head_n_rep,
66
67
68
                            cudaStream_t stream,
                            int          quant_policy,
                            const float* kv_scale);
Li Zhang's avatar
Li Zhang committed
69
70
71
72
73
74
75
76
77
78
79
80
81

void invokeGatherOutput(int*         output_ids,
                        const int*   ids,
                        const int*   context_length,
                        int          max_context_len,
                        int          max_gen_step,
                        int          max_output_len,
                        int          batch_size,
                        cudaStream_t stream);

void invokeMyCopyInt(int* dst, const int* src, size_t count, cudaStream_t st);

template<typename T>
q.yao's avatar
q.yao committed
82
struct BaseAttentionLayout {
83
84
85
86
87
88
    int    stride_batch;
    int    stride_seq;
    int    stride_head;
    bool   use_seqlens       = false;
    size_t batch_seqs_offset = 0;
    T**    batch_seqs        = nullptr;
q.yao's avatar
q.yao committed
89
90
91
92
93
94
95
96
97
};

template<typename T>
struct BaseAttentionParams {
    T*                     attn_out;
    T*                     query;
    T*                     key;
    T*                     val;
    T*                     mask;
98
99
100
101
102
103
    float*                 out_accum       = nullptr;
    int*                   cu_seqlens_q    = nullptr;
    int*                   cu_seqlens_k    = nullptr;
    int*                   actual_seqlen_q = nullptr;
    int*                   actual_seqlen_k = nullptr;
    size_t                 group_size      = 1;
q.yao's avatar
q.yao committed
104
105
106
107
108
109
110
111
    BaseAttentionLayout<T> layout_q;
    BaseAttentionLayout<T> layout_k;
    BaseAttentionLayout<T> layout_v;
    BaseAttentionLayout<T> layout_o;
};

template<typename T, int version>
class FlashAttentionOpImpl {
Li Zhang's avatar
Li Zhang committed
112
public:
q.yao's avatar
q.yao committed
113
114
    using AttentionLayout = BaseAttentionLayout<T>;
    using Params          = BaseAttentionParams<T>;
Li Zhang's avatar
Li Zhang committed
115
116

public:
q.yao's avatar
q.yao committed
117
118
    FlashAttentionOpImpl(int batch_size, int head_num, int key_len, int seq_len, int size_per_head);
    ~FlashAttentionOpImpl();
Li Zhang's avatar
Li Zhang committed
119
120
121
122
123
124
125
126
127
128

    int get_workspace_size() const;

    void operator()(Params& params, cudaStream_t st) const;

private:
    class impl;
    std::unique_ptr<impl> pimpl;
};

q.yao's avatar
q.yao committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
template<typename T>
class FlashAttentionOp {
public:
    using AttentionLayout = BaseAttentionLayout<T>;
    using Params          = BaseAttentionParams<T>;

public:
    FlashAttentionOp(int batch_size, int head_num, int key_len, int seq_len, int size_per_head);

    int get_workspace_size() const;

    void operator()(Params& params, cudaStream_t st) const;

private:
    int batch_size_;
    int head_num_;
    int key_len_;
    int seq_len_;
    int size_per_head_;
    int op_version_;
};

Li Zhang's avatar
Li Zhang committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
template<typename T>
inline void dump(const T* x, int size, cudaStream_t st, const char* msg, bool full = false)
{
    std::vector<T> h_x(size);
    cudaMemcpyAsync(h_x.data(), x, sizeof(T) * size, cudaMemcpyDefault, st);
    cudaStreamSynchronize(st);
    fprintf(stderr, "\n%s:\n", msg);
    std::vector<float> h_y(h_x.begin(), h_x.end());
    float              asum = 0.f;
    for (const auto& x : h_y) {
        asum += std::fabs(x);
    }
    if (full) {
        for (int i = 0; i < size; ++i) {
            printf("%d %.8f\n", i, h_y[i]);
        }
    }
    else {
        for (int i = 0; i < 8; ++i) {
            fprintf(stderr, "%.8f\n", h_y[i]);
        }
        for (int i = size - 8; i < size; ++i) {
            fprintf(stderr, "%.8f\n", h_y[i]);
        }
    }
    fprintf(stderr, "\nasum = %f\n", asum);
    // getchar();
}

template<typename T>
struct TempBuffer {
    TempBuffer(size_t size)
    {
        deviceMalloc(&data, size, false);
    }
    T* data;
};

inline void dump_sequence_len(int* d_seq_len, int step, int tp_rank, cudaStream_t st)
{
    int h_seq_len = -1;
    cudaMemcpyAsync(&h_seq_len, d_seq_len, sizeof(int), cudaMemcpyDefault, st);
    cudaStreamSynchronize(st);
lvhan028's avatar
lvhan028 committed
194
    TM_LOG_ERROR("--------> rank = %d, step = %d, seq_len = %d <--------", tp_rank, step, h_seq_len);
Li Zhang's avatar
Li Zhang committed
195
196
}

lvhan028's avatar
lvhan028 committed
197
}  // namespace turbomind