decoding_gemm_func.cc 16.5 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/*
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

lvhan028's avatar
lvhan028 committed
17
#include "src/turbomind/utils/gemm_test/decoding_gemm_func.h"
Chen Xin's avatar
Chen Xin committed
18
19
#include "src/turbomind/macro.h"
#include <chrono>
Li Zhang's avatar
Li Zhang committed
20

lvhan028's avatar
lvhan028 committed
21
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

template<typename T>
void generate_decoding_gemm_config(int   batch_size,
                                   int   beam_width,
                                   int   max_mem_seq_len,
                                   int   head_num,
                                   int   size_per_head,
                                   int   inter_size,
                                   int   vocab_size,
                                   int   mem_hidden_units,
                                   void* buffer_in,
                                   bool  isAppend)
{
    void* cublas_workspace;
    void* buffer;
    int   workSpaceSize;

#ifdef ENABLE_BF16
    if (std::is_same<T, half>::value || std::is_same<T, __nv_bfloat16>::value) {
#else
    if (std::is_same<T, half>::value) {
#endif  // ENABLE_BF16
        // cublas_workspace_ should be the start pointer of cudaMalloc()
        // to ensure 16B alignemnet
        cublas_workspace = buffer_in;
        buffer           = (void*)((char*)cublas_workspace + CUBLAS_WORKSPACE_SIZE);
        workSpaceSize    = CUBLAS_WORKSPACE_SIZE;
    }
    else {
        cublas_workspace = nullptr;
        buffer           = buffer_in;
        workSpaceSize    = 0;
    }

    struct cudaDeviceProp prop;
    check_cuda_error(cudaGetDeviceProperties(&prop, 0));
    printf("Device %s\n", prop.name);

    // check config
    FILE* fd;
    int   line_count = 0;
    if (!isAppend) {
        fd = fopen(GEMM_CONFIG, "w+");
    }
    else {
        fd = fopen(GEMM_CONFIG, "a+");
        std::vector<std::string> config;
        char                     line[1024];
        while (fgets(line, 1024, fd) != NULL) {
            config.push_back(std::string(line));
        }
        line_count = config.size();
        if (config.size() >= (MAX_CONFIG_NUM * GEMM_NUM + 1))  // 6 cublas/cublasLt, first row is not included
        {
            int startIdx = config.size() - ((MAX_CONFIG_NUM - 1) * GEMM_NUM);
            fclose(fd);
            fd = fopen(GEMM_CONFIG, "w+");
            fprintf(fd, "%s", config[0].c_str());
            for (uint i = startIdx; i < config.size(); i++) {
                fprintf(fd, "%s", config[i].c_str());
            }
            line_count = config.size() - (GEMM_NUM + 3);
        }
    }

    const int hidden_units = head_num * size_per_head;
    const int gemm_num     = 6;
    int       M[gemm_num];
    int       N[gemm_num];
    int       K[gemm_num];
    int       batchCount[gemm_num] = {1, 1, 1, 1, 1, 1};
    char      mess[gemm_num][256];

    // gemm 0
    M[0] = batch_size * beam_width;
    K[0] = hidden_units;
    N[0] = K[0] * 3;
    strcpy(mess[0], "from_tensor * weightQKV");

    // gemm 1
    M[1] = batch_size * beam_width;
    K[1] = hidden_units;
    N[1] = K[1];
    strcpy(mess[1], "attr * output_kernel");

    // gemm2
    M[2] = batch_size * beam_width * max_mem_seq_len;
    K[2] = mem_hidden_units;
    N[2] = hidden_units;
    strcpy(mess[2], "mem_tensor * weightK/V in cross attention");

    // gemm 3
    M[3] = batch_size * beam_width;
    K[3] = hidden_units;
    N[3] = inter_size;
    strcpy(mess[3], "ffn gemm1 ");

    // gemm 4
    M[4] = batch_size * beam_width;
    K[4] = inter_size;
    N[4] = hidden_units;
    strcpy(mess[4], "ffn gemm2");

    // gemm5
    M[5] = batch_size * beam_width;
    K[5] = hidden_units;
    N[5] = ceil(vocab_size / 8.) * 8;
    strcpy(mess[5], "decoder_output * embedding_kernel -> embedding_output");

    cublasHandle_t cublas_handle;
    check_cuda_error(cublasCreate(&cublas_handle));
xiabo's avatar
xiabo committed
133
134
    // cublasLtHandle_t ltHandle;
    // check_cuda_error(cublasLtCreate(&ltHandle));
Li Zhang's avatar
Li Zhang committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

    cudaDataType_t AType;
    cudaDataType_t BType;
    cudaDataType_t CType;
    cudaDataType_t computeType;
    int            startAlgo, endAlgo;
    const int      ites = 100;

    CublasDataType data_type;
    if (std::is_same<T, float>::value) {
        data_type   = FLOAT_DATATYPE;
        AType       = CUDA_R_32F;
        BType       = CUDA_R_32F;
        CType       = CUDA_R_32F;
        computeType = CUDA_R_32F;
        startAlgo   = (int)CUBLAS_GEMM_DEFAULT;
xiabo's avatar
xiabo committed
151
152
        // endAlgo     = (int)CUBLAS_GEMM_ALGO23;
        endAlgo     = (int)CUBLAS_GEMM_DEFAULT;
Li Zhang's avatar
Li Zhang committed
153
154
155
156
157
158
    }
    else if (std::is_same<T, half>::value) {
        data_type   = HALF_DATATYPE;
        AType       = CUDA_R_16F;
        BType       = CUDA_R_16F;
        CType       = CUDA_R_16F;
xiabo's avatar
xiabo committed
159
        computeType = CUDA_R_16F;
xiabo's avatar
xiabo committed
160
161
162
163
        // startAlgo   = (int)CUBLAS_GEMM_DEFAULT_TENSOR_OP;
        // endAlgo     = (int)CUBLAS_GEMM_ALGO15_TENSOR_OP;
        startAlgo   = (int)CUBLAS_GEMM_DEFAULT;
        endAlgo     = (int)CUBLAS_GEMM_DEFAULT;
Li Zhang's avatar
Li Zhang committed
164
165
166
167
168
169
170
171
    }
#ifdef ENABLE_BF16
    else if (std::is_same<T, __nv_bfloat16>::value) {
        data_type   = BFLOAT16_DATATYPE;
        AType       = CUDA_R_16BF;
        BType       = CUDA_R_16BF;
        CType       = CUDA_R_16BF;
        computeType = CUDA_R_32F;
xiabo's avatar
xiabo committed
172
173
174
175
        // startAlgo   = (int)CUBLAS_GEMM_DEFAULT_TENSOR_OP;
        // endAlgo     = (int)CUBLAS_GEMM_ALGO15_TENSOR_OP;
        startAlgo   = (int)CUBLAS_GEMM_DEFAULT;
        endAlgo     = (int)CUBLAS_GEMM_DEFAULT;
Li Zhang's avatar
Li Zhang committed
176
177
    }
#endif
xiabo's avatar
xiabo committed
178
179
    // using scaleT = typename ScaleTypeConverter<T>::Type;
    using scaleT = typename ScaleTypeConverter<T, true>::Type;
Li Zhang's avatar
Li Zhang committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

    scaleT alpha = (scaleT)1.0f;
    scaleT beta  = (scaleT)0.0f;

    printf("***Encoder Gemm Testing Begin***\n");
    printf("***Cublas Gemm Testing Begin***\n");
    if (line_count == 0) {
        fprintf(fd,
                "batch_size, seq_len, head_num, size_per_head dataType ### batchCount, n, m, k, algoId, "
                "customOption, tile, numSplitsK, swizzle, reductionScheme, workspaceSize, stages, exec_time\n");
    }
    for (int i = 0; i < gemm_num; ++i) {
        int m = M[i], n = N[i], k = K[i];
        printf("\n-----------------------------\n");
        printf("GEMM test %d: [M: %d, K: %d, N: %d] %s\n", i, m, k, n, mess[i]);
        T* d_A = (T*)buffer;
        T* d_B = d_A + m * k * batchCount[i];
        T* d_C = d_B + k * n * batchCount[i];

        float exec_time = 99999.0f;
        int   fast_algo = 0;
        int   seq_len   = i == 2 ? max_mem_seq_len : 1;
        for (int algo = startAlgo; algo <= endAlgo; algo++) {
            cublasStatus_t status;
            cudaDeviceSynchronize();
Chen Xin's avatar
Chen Xin committed
205
            auto start = std::chrono::high_resolution_clock::now();
Li Zhang's avatar
Li Zhang committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
            for (int ite = 0; ite < ites; ++ite) {
                status = cublasGemmEx(cublas_handle,
                                      CUBLAS_OP_N,
                                      CUBLAS_OP_N,
                                      n,
                                      m,
                                      k,
                                      &alpha,
                                      d_B,
                                      BType,
                                      n,
                                      d_A,
                                      AType,
                                      k,
                                      &beta,
                                      d_C,
                                      CType,
                                      n,
                                      computeType,
                                      static_cast<cublasGemmAlgo_t>(algo));
                if (status != CUBLAS_STATUS_SUCCESS) {
                    break;
                }
            }
            cudaDeviceSynchronize();
Chen Xin's avatar
Chen Xin committed
231
232
            auto end = std::chrono::high_resolution_clock::now();
            auto dur = std::chrono::duration<float, std::milli>(end - start);
Li Zhang's avatar
Li Zhang committed
233
            if (status == CUBLAS_STATUS_SUCCESS) {
Chen Xin's avatar
Chen Xin committed
234
235
236
                printf("algo_%d costs %.3fms \n", algo, dur.count() / ites);
                if (dur.count() / ites < exec_time) {
                    exec_time = dur.count() / ites;
Li Zhang's avatar
Li Zhang committed
237
238
239
240
241
242
243
244
245
246
                    fast_algo = algo;
                }
            }
        }
        printf("fast_algo %d costs %.3f ms\n", fast_algo, exec_time);

        // for fp16 and bf16, we compare cublasLt
        if (data_type != FLOAT_DATATYPE) {
            printf("***cublasLt Gemm Testing Begin***\n");
            // Let try a fixed number of combinations
Chen Xin's avatar
Chen Xin committed
247
            const int          ALGO_COMBINATIONS = 5000;
Li Zhang's avatar
Li Zhang committed
248
249
            customMatmulPerf_t perfResults[ALGO_COMBINATIONS];

xiabo's avatar
xiabo committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
            // LtHgemmCustomFind<T, scaleT>(ltHandle,
            //                              batch_size * beam_width,
            //                              seq_len,
            //                              head_num,
            //                              size_per_head,
            //                              n,
            //                              m,
            //                              k,
            //                              &alpha,
            //                              d_B,
            //                              d_A,
            //                              &beta,
            //                              d_C,
            //                              cublas_workspace,
            //                              workSpaceSize,
            //                              fd,
            //                              perfResults,
            //                              ALGO_COMBINATIONS);
            // if (perfResults[0].time < exec_time) {
            //     printPerfStructure(batch_size * beam_width,
            //                        seq_len,
            //                        head_num,
            //                        size_per_head,
            //                        n,
            //                        m,
            //                        k,
            //                        perfResults[0],
            //                        fd,
            //                        data_type,
            //                        0);
            // }
            // else {
            {
Li Zhang's avatar
Li Zhang committed
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
                fprintf(fd,
                        "%d %d %d %d %d ### %d %d %d %d %d -1 -1 -1 -1 -1 -1 -1 "
#if (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH >= 3)
                        "-1 -1 "
#elif (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH < 3)
                        "-1 -1 -1 "
#endif
                        "%f\n",
                        batch_size * beam_width,
                        seq_len,
                        head_num,
                        size_per_head,
                        data_type,
                        batchCount[i],
                        n,
                        m,
                        k,
                        fast_algo,
                        exec_time);
            }
            printf("***cublasLt Gemm Testing End***\n");
        }
        else {
            fprintf(fd,
                    "%d %d %d %d %d ### %d %d %d %d %d -1 -1 -1 -1 -1 -1 -1 "
#if (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH >= 3)
                    "-1 -1 "
#elif (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH < 3)
                    "-1 -1 -1 "
#endif
                    "%f\n",
                    batch_size * beam_width,
                    seq_len,
                    head_num,
                    size_per_head,
                    data_type,
                    batchCount[i],
                    n,
                    m,
                    k,
                    fast_algo,
                    exec_time);
        }
    }
    printf("***cublas Gemm Testing End***\n\n");
    fclose(fd);
    printf("***Decoding Gemm Testing End***\n");
    return;
}

template void generate_decoding_gemm_config<float>(int   batch_size,
                                                   int   beam_width,
                                                   int   seq_len,
                                                   int   head_num,
                                                   int   size_per_head,
                                                   int   inter_size,
                                                   int   vocab_size,
                                                   int   mem_hidden_units,
                                                   void* buffer_in,
                                                   bool  isAppend);

template void generate_decoding_gemm_config<half>(int   batch_size,
                                                  int   beam_width,
                                                  int   seq_len,
                                                  int   head_num,
                                                  int   size_per_head,
                                                  int   inter_size,
                                                  int   vocab_size,
                                                  int   mem_hidden_units,
                                                  void* buffer_in,
                                                  bool  isAppend);

#ifdef ENABLE_BF16
template void generate_decoding_gemm_config<__nv_bfloat16>(int   batch_size,
                                                           int   beam_width,
                                                           int   seq_len,
                                                           int   head_num,
                                                           int   size_per_head,
                                                           int   inter_size,
                                                           int   vocab_size,
                                                           int   mem_hidden_units,
                                                           void* buffer_in,
                                                           bool  isAppend);
#endif

size_t calDecodingGemmTestBufSizeInByte(int            batch_size,
                                        int            beam_width,
                                        int            max_mem_seq_len,
                                        int            head_num,
                                        int            size_per_head,
                                        int            inter_size,
                                        int            memory_hidden_units,
                                        int            vocab_size,
                                        CublasDataType data_type)
{
    size_t       buf_size_in_byte   = 0;
    const size_t tensor_para_size   = 1;
    const size_t hidden_units       = head_num * size_per_head;
    const size_t local_head_num     = head_num / tensor_para_size;
    const size_t local_hidden_units = local_head_num * size_per_head;

    // int wordSize = (data_type == FLOAT_DATATYPE ? sizeof(float) : sizeof(half));
    // Because we always use float for some buffer, set the wordSize to float directly.
    int wordSize = sizeof(float);

    size_t              m = batch_size * beam_width;
    std::vector<size_t> buff_size;
    // for qkv gemm
    buff_size.push_back(m * hidden_units + hidden_units * 3 * local_hidden_units + m * 3 * local_hidden_units);
    // for attention output gemm
    buff_size.push_back(m * hidden_units + hidden_units * local_hidden_units + m * local_hidden_units);
    // for memory_tensor gemm
    buff_size.push_back(m * max_mem_seq_len * memory_hidden_units + memory_hidden_units * local_hidden_units
                        + m * max_mem_seq_len * local_hidden_units);
    // for context ffn gemm
    buff_size.push_back(m * inter_size / tensor_para_size + hidden_units * inter_size / tensor_para_size
                        + m * hidden_units);
    // for vocab
    buff_size.push_back(m * hidden_units + hidden_units * ceil(vocab_size / 8.) * 8 / tensor_para_size
                        + m * ceil(vocab_size / 8.) * 8 / tensor_para_size);

    for (auto t : buff_size) {
        buf_size_in_byte = buf_size_in_byte > t ? buf_size_in_byte : t;
    }
    buf_size_in_byte *= wordSize;
    buf_size_in_byte += ((data_type == HALF_DATATYPE || data_type == BFLOAT16_DATATYPE) ? CUBLAS_WORKSPACE_SIZE : 0);

    return buf_size_in_byte;
}

lvhan028's avatar
lvhan028 committed
413
}  // namespace turbomind