llama_kernels.h 6.87 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
// Copyright (c) OpenMMLab. All rights reserved.

#pragma once

lvhan028's avatar
lvhan028 committed
5
6
7
#include "src/turbomind/kernels/gpt_kernels.h"
#include "src/turbomind/utils/cuda_bf16_wrapper.h"
#include "src/turbomind/utils/cuda_utils.h"
Li Zhang's avatar
Li Zhang committed
8
9
10
11
12
#include <assert.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <numeric>

lvhan028's avatar
lvhan028 committed
13
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

template<typename T>
void invokeRootMeanSquareNorm(T* out, const T* input, const T* scale, float eps, int m, int n, cudaStream_t stream);

template<typename T>
void invokeAddResidual(T* out, const T* in, int m, int n, cudaStream_t stream);

void invokeFixInputIds(int*         ids,
                       const int*   input_ids,
                       const int*   input_lengths,
                       int          batch_size,
                       int          seq_len,
                       int          max_input_len,
                       cudaStream_t st);

template<typename T>
void invokeSliceCausalMask(T* mask, int seq_len, int key_len, int step, int batch_size, cudaStream_t stream);

template<typename T>
void invokeCreateCausalMasks(
    T* mask, const int* q_lens, const int* k_lens, int max_q_len, int max_k_len, int batch_size, cudaStream_t stream);

template<typename T>
Li Zhang's avatar
Li Zhang committed
37
38
void invokeExtendKVCache(void**       k_dst_ptrs,
                         void**       v_dst_ptrs,
Li Zhang's avatar
Li Zhang committed
39
40
                         const T*     k_src,
                         const T*     v_src,
Li Zhang's avatar
Li Zhang committed
41
                         const int*   cu_block_counts,
Li Zhang's avatar
Li Zhang committed
42
                         const int*   query_length,
Li Zhang's avatar
Li Zhang committed
43
44
45
46
                         const int*   context_length,
                         int          batch_size,
                         int          block_length,
                         size_t       dst_layer_offset,
Li Zhang's avatar
Li Zhang committed
47
                         int          max_q_len,
Li Zhang's avatar
Li Zhang committed
48
49
                         int          head_dim,
                         int          head_num,
50
                         int          quant,
Li Zhang's avatar
Li Zhang committed
51
52
                         const float* kv_scale,
                         cudaStream_t stream);
Li Zhang's avatar
Li Zhang committed
53
54
55
56
57
58
59
60
61
62
63
64
65

template<typename T>
void invokeTransposeKVCache(T*           key_cache_trans,
                            T*           val_cache_trans,
                            const T**    key_cache,
                            const T**    val_cache,
                            size_t       layer_offset,
                            int          batch_size,
                            const int*   key_length,
                            int          max_kv_len,
                            int          max_seq_len,
                            int          size_per_head,
                            int          head_num,
66
                            int          head_n_rep,
67
68
69
                            cudaStream_t stream,
                            int          quant_policy,
                            const float* kv_scale);
Li Zhang's avatar
Li Zhang committed
70
71
72
73
74
75
76
77
78
79

void invokeGatherOutput(int*         output_ids,
                        const int*   ids,
                        const int*   context_length,
                        int          max_context_len,
                        int          max_gen_step,
                        int          max_output_len,
                        int          batch_size,
                        cudaStream_t stream);

Li Zhang's avatar
Li Zhang committed
80
81
82
83
84
85
86
87
88
89
void invokeUpdateOutput(int**        request_output_ids_ptrs,
                        int**        request_seqlen_ptrs,
                        const int*   output_ids,
                        const int*   sequence_lengths,
                        const int*   request_output_ids_lens,
                        int          max_session_len,
                        bool         token_generated,
                        int          batch_size,
                        cudaStream_t stream);

Li Zhang's avatar
Li Zhang committed
90
91
92
void invokeMyCopyInt(int* dst, const int* src, size_t count, cudaStream_t st);

template<typename T>
q.yao's avatar
q.yao committed
93
struct BaseAttentionLayout {
94
95
96
97
98
99
    int    stride_batch;
    int    stride_seq;
    int    stride_head;
    bool   use_seqlens       = false;
    size_t batch_seqs_offset = 0;
    T**    batch_seqs        = nullptr;
q.yao's avatar
q.yao committed
100
101
102
103
104
105
106
107
108
};

template<typename T>
struct BaseAttentionParams {
    T*                     attn_out;
    T*                     query;
    T*                     key;
    T*                     val;
    T*                     mask;
109
110
111
112
113
114
    float*                 out_accum       = nullptr;
    int*                   cu_seqlens_q    = nullptr;
    int*                   cu_seqlens_k    = nullptr;
    int*                   actual_seqlen_q = nullptr;
    int*                   actual_seqlen_k = nullptr;
    size_t                 group_size      = 1;
q.yao's avatar
q.yao committed
115
116
117
118
119
120
121
122
    BaseAttentionLayout<T> layout_q;
    BaseAttentionLayout<T> layout_k;
    BaseAttentionLayout<T> layout_v;
    BaseAttentionLayout<T> layout_o;
};

template<typename T, int version>
class FlashAttentionOpImpl {
Li Zhang's avatar
Li Zhang committed
123
public:
q.yao's avatar
q.yao committed
124
125
    using AttentionLayout = BaseAttentionLayout<T>;
    using Params          = BaseAttentionParams<T>;
Li Zhang's avatar
Li Zhang committed
126
127

public:
q.yao's avatar
q.yao committed
128
129
    FlashAttentionOpImpl(int batch_size, int head_num, int key_len, int seq_len, int size_per_head);
    ~FlashAttentionOpImpl();
Li Zhang's avatar
Li Zhang committed
130
131
132
133
134
135
136
137
138
139

    int get_workspace_size() const;

    void operator()(Params& params, cudaStream_t st) const;

private:
    class impl;
    std::unique_ptr<impl> pimpl;
};

q.yao's avatar
q.yao committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
template<typename T>
class FlashAttentionOp {
public:
    using AttentionLayout = BaseAttentionLayout<T>;
    using Params          = BaseAttentionParams<T>;

public:
    FlashAttentionOp(int batch_size, int head_num, int key_len, int seq_len, int size_per_head);

    int get_workspace_size() const;

    void operator()(Params& params, cudaStream_t st) const;

private:
    int batch_size_;
    int head_num_;
    int key_len_;
    int seq_len_;
    int size_per_head_;
    int op_version_;
};

Li Zhang's avatar
Li Zhang committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
template<typename T>
inline void dump(const T* x, int size, cudaStream_t st, const char* msg, bool full = false)
{
    std::vector<T> h_x(size);
    cudaMemcpyAsync(h_x.data(), x, sizeof(T) * size, cudaMemcpyDefault, st);
    cudaStreamSynchronize(st);
    fprintf(stderr, "\n%s:\n", msg);
    std::vector<float> h_y(h_x.begin(), h_x.end());
    float              asum = 0.f;
    for (const auto& x : h_y) {
        asum += std::fabs(x);
    }
    if (full) {
        for (int i = 0; i < size; ++i) {
            printf("%d %.8f\n", i, h_y[i]);
        }
    }
    else {
        for (int i = 0; i < 8; ++i) {
            fprintf(stderr, "%.8f\n", h_y[i]);
        }
        for (int i = size - 8; i < size; ++i) {
            fprintf(stderr, "%.8f\n", h_y[i]);
        }
    }
    fprintf(stderr, "\nasum = %f\n", asum);
    // getchar();
}

template<typename T>
struct TempBuffer {
    TempBuffer(size_t size)
    {
        deviceMalloc(&data, size, false);
    }
    T* data;
};

inline void dump_sequence_len(int* d_seq_len, int step, int tp_rank, cudaStream_t st)
{
    int h_seq_len = -1;
    cudaMemcpyAsync(&h_seq_len, d_seq_len, sizeof(int), cudaMemcpyDefault, st);
    cudaStreamSynchronize(st);
lvhan028's avatar
lvhan028 committed
205
    TM_LOG_ERROR("--------> rank = %d, step = %d, seq_len = %d <--------", tp_rank, step, h_seq_len);
Li Zhang's avatar
Li Zhang committed
206
207
}

lvhan028's avatar
lvhan028 committed
208
}  // namespace turbomind