array_ops.h 13.9 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
// Copyright (c) OpenMMLab. All rights reserved.

#pragma once

#include "src/turbomind/kernels/gemm_s_f16/common.h"
q.yao's avatar
q.yao committed
6
#include "src/turbomind/utils/cuda_bf16_wrapper.h"
Li Zhang's avatar
Li Zhang committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
#include <cfloat>
#include <limits>

namespace turbomind {

namespace ops {

template<typename T>
struct plus {
    __device__ T operator()(T a, T b)
    {
        return a + b;
    }
};

template<typename T>
struct minus {
    __device__ T operator()(T a, T b)
    {
        return a - b;
    }
};

template<typename T>
struct multiplies {
    __device__ T operator()(T a, T b)
    {
        return a * b;
    }
};

template<typename T, int N, typename Op>
inline __device__ Array<T, N> binary_op_vv(const Array<T, N>& a, const Array<T, N>& b, Op op)
{
    Array<T, N> c;
    PRAGMA_UNROLL
    for (int i = 0; i < N; ++i) {
        c[i] = op(a[i], b[i]);
    }
    return c;
}

template<typename T, int N, typename Op>
inline __device__ Array<T, N> binary_op_sv(const T& a, const Array<T, N>& b, Op op)
{
    Array<T, N> c;
    PRAGMA_UNROLL
    for (int i = 0; i < N; ++i) {
        c[i] = op(a, b[i]);
    }
    return c;
}

template<typename T, int N, typename Op>
inline __device__ Array<T, N> binary_op_vs(const Array<T, N>& a, const T& b, Op op)
{
    Array<T, N> c;
    PRAGMA_UNROLL
    for (int i = 0; i < N; ++i) {
        c[i] = op(a[i], b);
    }
    return c;
}

template<typename T, int N>
inline __device__ Array<T, N> operator+(const Array<T, N>& a, const Array<T, N>& b)
{
    return binary_op_vv(a, b, plus<T>{});
}

template<typename T, int N>
inline __device__ Array<T, N> operator*(const Array<T, N>& a, const Array<T, N>& b)
{
    return binary_op_vv(a, b, multiplies<T>{});
}

template<typename T, int N>
inline __device__ Array<T, N> operator*(const Array<T, N>& a, const T& b)
{
    return binary_op_vs(a, b, multiplies<T>{});
}

}  // namespace ops

template<typename To, typename From, int N>
inline __device__ Array<To, N> cast(const Array<From, N>& src)
{
    Array<To, N> dst;
    PRAGMA_UNROLL
    for (int i = 0; i < N; ++i) {
        dst[i] = (To)src[i];
    }
    return dst;
}

template<int N>
struct RotaryEmbedding {

    static_assert(N % 2 == 0);

    Array<float, N> cs_;

    __device__ RotaryEmbedding(float base, int dims, int timestep, int2 offset)
    {
        PRAGMA_UNROLL
        for (int i = 0; i < N; i += 2) {
            const float2 tmp = get_coefficient(offset.x + i, dims, base, timestep);
            cs_[i]           = tmp.x;
            cs_[i + 1]       = tmp.y;
        }
    }

    static __device__ inline float2 get_coefficient(int idx, int dims, float base, int timestep)
    {
        const float inv_freq = timestep / powf(base, idx / (float)dims);
        float2      cs;
        sincosf(inv_freq, &cs.y, &cs.x);
        return cs;
    }

    template<typename T>
    __device__ void apply(Array<T, N>& x)
    {
        PRAGMA_UNROLL
        for (int i = 0; i < N; i += 2) {
            float tmp0 = cs_[i] * (float)x[i] - cs_[i + 1] * (float)x[i + 1];
            float tmp1 = cs_[i] * (float)x[i + 1] + cs_[i + 1] * (float)x[i];
            x[i]       = (T)tmp0;
            x[i + 1]   = (T)tmp1;
        }
    }
};

struct LogNScaling {

    float scale_;

    __device__ static float get_scale(int seq_len, int max_position_embeddings)
    {
        if (seq_len <= max_position_embeddings) {
            return 1.f;
        }
        else {
            return log2f(seq_len) / log2f(max_position_embeddings);
        }
    }

    __device__ LogNScaling(int seq_len, int max_position_embeddings)
    {
        scale_ = get_scale(seq_len, max_position_embeddings);
    }

    template<typename T, int N>
    __device__ void apply(Array<T, N>& x) const
    {
        PRAGMA_UNROLL
        for (int i = 0; i < N; ++i) {
            x[i] = (T)((float)x[i] * scale_);
        }
    }
};

template<typename T, int N>
inline __device__ void Store(T* dst, const Array<T, N>& src)
{
    static_assert(sizeof(Array<T, N>) <= sizeof(uint4));

    if constexpr (sizeof(Array<T, N>) == sizeof(uint4)) {
        *(uint4*)dst = (const uint4&)src;
    }
    else if constexpr (sizeof(Array<T, N>) == sizeof(uint2)) {
        *(uint2*)dst = (const uint2&)src;
    }
    else if constexpr (sizeof(Array<T, N>) == sizeof(uint1)) {
        *(uint1*)dst = (const uint1&)src;
    }
    else {
        static_assert(!std::is_same_v<T, T>);
    }
}

template<typename T, int N>
inline __device__ void Ldg(Array<T, N>& dst, const T* src)
{
    static_assert(sizeof(Array<T, N>) <= sizeof(uint4));

    if constexpr (sizeof(Array<T, N>) == sizeof(uint4)) {
        (uint4&)dst = __ldg((const uint4*)src);
    }
    else if constexpr (sizeof(Array<T, N>) == sizeof(uint2)) {
        (uint2&)dst = __ldg((const uint2*)src);
    }
    else if constexpr (sizeof(Array<T, N>) == sizeof(uint)) {
        (uint&)dst = __ldg((const uint*)src);
    }
    else {
        static_assert(!std::is_same_v<T, T>);
    }
}

template<typename T, int N>
inline __device__ void Lds(Array<T, N>& dst, const T* src)
{
    static_assert(sizeof(Array<T, N>) <= sizeof(uint4));

    if constexpr (sizeof(Array<T, N>) == sizeof(uint4)) {
        (uint4&)dst = *(const uint4*)src;
    }
    else if constexpr (sizeof(Array<T, N>) == sizeof(uint2)) {
        (uint2&)dst = *(const uint2*)src;
    }
    else if constexpr (sizeof(Array<T, N>) == sizeof(uint)) {
        (uint1&)dst = *(const uint1*)src;
    }
    else {
        static_assert(!std::is_same_v<T, T>);
    }
}

template<typename Accum, typename Compute, int kThreadGroupSize, typename Tq, typename Tk, int N, int V>
inline __device__ Accum qk_dot(const Array<Tq, N> (&q)[V], const Array<Tk, N> (&k)[V])
{
    Accum accum{};

    PRAGMA_UNROLL
    for (int vi = 0; vi < V; ++vi) {
        PRAGMA_UNROLL
        for (int i = 0; i < N; ++i) {
            accum += Accum(Compute(q[vi][i]) * Compute(k[vi][i]));
        }
    }

    PRAGMA_UNROLL
    for (int mask = kThreadGroupSize / 2; mask >= 1; mask /= 2) {
        accum += __shfl_xor_sync((uint32_t)-1, accum, mask);
    }

    return accum;
}

template<typename Accum, typename Compute, int kThreadGroupSize, typename Tq, typename Tk, int N>
inline __device__ Accum qk_dot(const Array<Tq, N>& q, const Array<Tk, N>& k)
{
    Accum accum{};

    PRAGMA_UNROLL
    for (int i = 0; i < N; ++i) {
        accum += Accum(Compute(q[i]) * Compute(k[i]));
    }

    PRAGMA_UNROLL
    for (int mask = kThreadGroupSize / 2; mask >= 1; mask /= 2) {
        accum += __shfl_xor_sync((uint32_t)-1, accum, mask);
    }

    return accum;
}

template<typename ComputeType, typename Tp, typename Tv, typename To, int N, int M>
inline __device__ void fma_pv(Tp pr, const Array<Tv, N> (&v)[M], Array<To, N> (&o)[M])
{
    PRAGMA_UNROLL
    for (int m = 0; m < M; ++m) {
        PRAGMA_UNROLL
        for (int n = 0; n < N; ++n) {
            o[m][n] += To(ComputeType(v[m][n]) * ComputeType(pr));
        }
    }
}

template<typename ThreadMap, typename T, int N>
inline __device__ Array<T, N> qk_max(Array<T, N> val, T* smem_red, int warp_id, int lane_id)
{
    constexpr int kWarpCount = ThreadMap::kWarpCount;

    // warp maximum
    PRAGMA_UNROLL
    for (int i = 0; i < N; ++i) {
        PRAGMA_UNROLL
        for (int mask = WARP_SIZE / 2; mask >= ThreadMap::kWarpThreadC; mask /= 2) {
            val[i] = fmaxf(val[i], __shfl_xor_sync((uint32_t)-1, val[i], mask));
        }
        if (lane_id == 0) {
            smem_red[i * kWarpCount + warp_id] = val[i];
        }
    }

    __syncthreads();

    // block maximum
    PRAGMA_UNROLL
    for (int i = 0; i < N; ++i) {
        val[i] = lane_id < kWarpCount ? smem_red[i * kWarpCount + lane_id] : -FLT_MAX;
        PRAGMA_UNROLL
        for (int mask = kWarpCount >> 1; mask >= 1; mask >>= 1) {
            val[i] = fmaxf(val[i], __shfl_xor_sync((uint32_t)-1, val[i], mask));
        }
        // braodcast to all threads
        val[i] = __shfl_sync((uint32_t)-1, val[i], 0);
    }

    return val;
}

template<int kWarpCount, typename T, int N>
inline __device__ Array<T, N> blockSum(Array<T, N> val, T* smem_red, int warp_id, int lane_id)
{
    PRAGMA_UNROLL
    for (int i = 0; i < N; ++i) {
        PRAGMA_UNROLL
        for (int mask = WARP_SIZE >> 1; mask >= 1; mask >>= 1) {
            val[i] += __shfl_xor_sync((uint32_t)-1, val[i], mask);
        }
        if (lane_id == 0) {
            smem_red[i * kWarpCount + warp_id] = val[i];
        }
    }

    __syncthreads();

    PRAGMA_UNROLL
    for (int i = 0; i < N; ++i) {
        val[i] = lane_id < kWarpCount ? smem_red[i * kWarpCount + lane_id] : T{};
        PRAGMA_UNROLL
        for (int mask = kWarpCount >> 1; mask >= 1; mask >>= 1) {
            val[i] += __shfl_xor_sync((uint32_t)-1, val[i], mask);
        }
        val[i] = __shfl_sync((uint32_t)-1, val[i], 0);
    }

    return val;
}

//////////////////////////////////////////////////////////////////////////////////////////////////

// generic case for floating point -> floating point / integer -> integer conversion
template<typename Ti, typename To, typename = void>
struct ConvertKvCache {
    __device__ __host__ ConvertKvCache(float, float) {}
    template<int N>
    inline __device__ auto operator()(const Array<Ti, N>& vi) const -> Array<To, N>
    {
        Array<To, N> vo;
        PRAGMA_UNROLL
        for (int i = 0; i < N; ++i) {
            vo[i] = (To)vi[i];
        }
        return vo;
    }
};

// generic case for converting to same type, bypass
template<typename T>
struct ConvertKvCache<T, T> {
    __device__ __host__ ConvertKvCache(float, float) {}
    template<int N>
    inline __device__ auto operator()(const Array<T, N>& v) const -> Array<T, N>
    {
        return v;
    }
};

template<typename Ti>
struct ConvertKvCache<Ti, int8_t> {

    float scale_;
    float zero_;

    __device__ __host__ ConvertKvCache(float scale, float zero): scale_(scale), zero_(zero) {}

    inline __device__ uint8_t round(float x) const
    {
        uint32_t y;
        asm("cvt.rni.sat.u8.f32 %0, %1;\n" : "=r"(y) : "f"(x));
        return y;
    }

    template<int N>
    inline __device__ auto operator()(const Array<Ti, N>& vi) const -> Array<int8_t, N>
    {
        Array<int8_t, N> vo;
        PRAGMA_UNROLL
        for (int i = 0; i < N; ++i) {
            // convert to unsigned int by offsetting +128
            (uint8_t&)vo[i] = round(((float)vi[i] - zero_) / scale_ + 128.f);
        }
        return vo;
    }
};

inline __device__ Array<float, 4> fast_i2f_f32_s8(const Array<int8_t, 4>& x)
{
    union {
        Array<float, 4>    f32x4;
        Array<uint32_t, 4> u32x4;
    };

    auto& i8s = (const uint32_t&)x;

    // 00000000111111112222222233333333
    // 01234567012345670123456701234567
    // SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMMM
    // 0????????_______XXXXXXXX________
    // (1 + x / 2^15) * 2^(e - 127) -> e - 127 == 15 -> e = 142
    //                                       7 6 5 4
    static constexpr uint32_t f32_magic = 0x47000000;  // 2^15 = 32768
    static constexpr uint32_t m0        = 0x7604;
    static constexpr uint32_t m1        = 0x7614;
    static constexpr uint32_t m2        = 0x7624;
    static constexpr uint32_t m3        = 0x7634;

    asm("prmt.b32 %0,%1,%2,%3;\n" : "=r"(u32x4[0]) : "r"(i8s), "n"(f32_magic), "n"(m0));
    asm("prmt.b32 %0,%1,%2,%3;\n" : "=r"(u32x4[1]) : "r"(i8s), "n"(f32_magic), "n"(m1));
    asm("prmt.b32 %0,%1,%2,%3;\n" : "=r"(u32x4[2]) : "r"(i8s), "n"(f32_magic), "n"(m2));
    asm("prmt.b32 %0,%1,%2,%3;\n" : "=r"(u32x4[3]) : "r"(i8s), "n"(f32_magic), "n"(m3));

    if (0) {  // fused with dequantization
        PRAGMA_UNROLL
        for (int i = 0; i < 4; ++i) {
            f32x4[i] -= 32896.f;  // 32768 + 128
        }
    }

    return f32x4;
}

template<>
struct ConvertKvCache<int8_t, float> {

    float scale_;
    float zero_;

    __device__ __host__ ConvertKvCache(float scale, float zero): scale_(scale), zero_(zero)
    {
        zero_ = zero_ - 32896.f * scale_;
    }

    template<int N>
    inline __device__ auto operator()(const Array<int8_t, N>& vi) const -> Array<float, N>
    {
        Array<float, N> vo;
        PRAGMA_UNROLL
        for (int i = 0; i < N; i += 4) {
            auto& vec = (Array<float, 4>&)vo[i];
            vec       = fast_i2f_f32_s8((const Array<int8_t, 4>&)vi[i]);
            PRAGMA_UNROLL
            for (int j = 0; j < 4; ++j) {
                vec[j] = vec[j] * scale_ + zero_;
                // vec[j] = vec[j] * scale_ + (zero_ - 32896.f * scale_);
            }
        }
        return vo;
    }
};

template<>
struct ConvertKvCache<int8_t, half> {

    float scale_;
    float zero_;

    __device__ __host__ ConvertKvCache(float scale, float zero): scale_(scale), zero_(zero)
    {
        zero_ = zero_ - 32896.f * scale_;
    }

    template<int N>
    inline __device__ auto operator()(const Array<int8_t, N>& vi) const -> Array<half, N>
    {
        Array<half, N> vo;
        PRAGMA_UNROLL
        for (int i = 0; i < N; i += 4) {
            auto& vec = (Array<half, 4>&)vo[i];
            auto  tmp = fast_i2f_f32_s8((const Array<int8_t, 4>&)vi[i]);
            PRAGMA_UNROLL
            for (int j = 0; j < 4; ++j) {
                vec[j] = half(tmp[j] * scale_ + zero_);
                // vec[j] = half(tmp[j] * scale_ + (zero_ - 32896.f * scale_));
            }
        }
        return vo;
    }
};

q.yao's avatar
q.yao committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
#ifdef ENABLE_BF16
template<>
struct ConvertKvCache<int8_t, __nv_bfloat16> {

    float scale_;
    float zero_;

    __device__ __host__ ConvertKvCache(float scale, float zero): scale_(scale), zero_(zero)
    {
        zero_ = zero_ - 32896.f * scale_;
    }

    template<int N>
    inline __device__ auto operator()(const Array<int8_t, N>& vi) const -> Array<__nv_bfloat16, N>
    {
        Array<__nv_bfloat16, N> vo;
        PRAGMA_UNROLL
        for (int i = 0; i < N; i += 4) {
            auto& vec = (Array<__nv_bfloat16, 4>&)vo[i];
            auto  tmp = fast_i2f_f32_s8((const Array<int8_t, 4>&)vi[i]);
            PRAGMA_UNROLL
            for (int j = 0; j < 4; ++j) {
                vec[j] = __nv_bfloat16(tmp[j] * scale_ + zero_);
                // vec[j] = half(tmp[j] * scale_ + (zero_ - 32896.f * scale_));
            }
        }
        return vo;
    }
};
#endif  // ENABLE_BF16
Li Zhang's avatar
Li Zhang committed
521
}  // namespace turbomind