nccl_utils.cc 17.2 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/*
 * Copyright (c) 2021-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "src/fastertransformer/utils/nccl_utils.h"
#include <atomic>

namespace fastertransformer {

#ifdef BUILD_MULTI_GPU
template<typename T>
ncclDataType_t getNcclDataType()
{
    FT_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
    ncclDataType_t nccl_data_type;
    if (std::is_same<T, float>::value) {
        nccl_data_type = ncclFloat;
    }
    else if (std::is_same<T, half>::value) {
        nccl_data_type = ncclHalf;
    }
#if defined(ENABLE_BF16) && defined(ENABLE_BF16_NCCL)
    else if (std::is_same<T, __nv_bfloat16>::value) {
        nccl_data_type = ncclBfloat16;
    }
#endif
    else if (std::is_same<T, int>::value) {
        nccl_data_type = ncclInt;
    }
    else if (std::is_same<T, char>::value) {
        nccl_data_type = ncclChar;
    }
    else if (std::is_same<T, bool>::value) {
        nccl_data_type = ncclInt8;
    }
    else {
        printf("[ERROR] NCCL only support float, half, bfloat16, int, char, and bool. \n");
        exit(-1);
    }
    return nccl_data_type;
}
#endif

template<typename T>
void ftNcclAllReduceSum(const T* send_buf, T* recv_buf, const int data_size, NcclParam nccl_param, cudaStream_t stream)
{
    FT_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
#ifdef BUILD_MULTI_GPU
    ncclDataType_t nccl_data_type = getNcclDataType<T>();
    NCCLCHECK(ncclGroupStart());
    NCCLCHECK(ncclAllReduce(
        (const void*)send_buf, (void*)recv_buf, data_size, nccl_data_type, ncclSum, nccl_param.nccl_comm_, stream));
    NCCLCHECK(ncclGroupEnd());
#endif
    FT_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}

template<typename T>
void ftNcclAllGather(
    const T* send_buf, T* recv_buf, const int data_size, const int rank, NcclParam nccl_param, cudaStream_t stream)
{
    FT_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
#ifdef BUILD_MULTI_GPU
    ncclDataType_t nccl_data_type = getNcclDataType<T>();
    NCCLCHECK(ncclGroupStart());
    NCCLCHECK(
        ncclAllGather(send_buf + rank * data_size, recv_buf, data_size, nccl_data_type, nccl_param.nccl_comm_, stream));
    NCCLCHECK(ncclGroupEnd());
#endif
    FT_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}

template<typename T>
void ftNcclSend(const T* send_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream)
{
    FT_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
#ifdef BUILD_MULTI_GPU
    ncclDataType_t nccl_data_type = getNcclDataType<T>();
    NCCLCHECK(ncclSend(send_buf, data_size, nccl_data_type, peer, nccl_param.nccl_comm_, stream));
#endif
    FT_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}

template void
ftNcclSend(const float* send_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclSend(const half* send_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
#ifdef ENABLE_BF16
template void ftNcclSend(
    const __nv_bfloat16* send_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
#endif
template void
ftNcclSend(const int* send_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclSend(const bool* send_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclSend(const char* send_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);

template<typename T>
void ftNcclRecv(T* recv_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream)
{
    FT_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
#ifdef BUILD_MULTI_GPU
    ncclDataType_t nccl_data_type = getNcclDataType<T>();
    NCCLCHECK(ncclRecv(recv_buf, data_size, nccl_data_type, peer, nccl_param.nccl_comm_, stream));
#endif
    FT_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}

template void
ftNcclRecv(float* recv_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclRecv(half* recv_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
#ifdef ENABLE_BF16
template void
ftNcclRecv(__nv_bfloat16* recv_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
#endif
template void ftNcclRecv(int* recv_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclRecv(bool* recv_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclRecv(char* recv_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);

template<typename T>
void ftNcclBroadCast(T* buff, const int data_size, const int root, NcclParam nccl_param, cudaStream_t stream)
{
    FT_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
#ifdef BUILD_MULTI_GPU
    ncclDataType_t nccl_data_type = getNcclDataType<T>();
    NCCLCHECK(ncclBcast(buff, data_size, nccl_data_type, root, nccl_param.nccl_comm_, stream));
#endif
    FT_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}

template void
ftNcclBroadCast(char* buff, const int data_size, const int root, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclBroadCast(bool* buff, const int data_size, const int root, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclBroadCast(int* buff, const int data_size, const int root, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclBroadCast(float* buff, const int data_size, const int root, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclBroadCast(half* buff, const int data_size, const int root, NcclParam nccl_param, cudaStream_t stream);
#ifdef ENABLE_BF16
template void
ftNcclBroadCast(__nv_bfloat16* buff, const int data_size, const int root, NcclParam nccl_param, cudaStream_t stream);
#endif

template void ftNcclAllReduceSum(
    const float* send_buf, float* recv_buf, const int data_size, NcclParam nccl_param, cudaStream_t stream);

template void ftNcclAllReduceSum(
    const half* send_buf, half* recv_buf, const int data_size, NcclParam nccl_param, cudaStream_t stream);

template void ftNcclAllReduceSum(
    const int32_t* send_buf, int32_t* recv_buf, const int data_size, NcclParam nccl_param, cudaStream_t stream);

#ifdef ENABLE_BF16
template void ftNcclAllReduceSum(const __nv_bfloat16* send_buf,
                                 __nv_bfloat16*       recv_buf,
                                 const int            data_size,
                                 NcclParam            nccl_param,
                                 cudaStream_t         stream);
#endif

template void ftNcclAllGather(const float* send_buf,
                              float*       recv_buf,
                              const int    data_size,
                              const int    rank,
                              NcclParam    nccl_param,
                              cudaStream_t stream);

template void ftNcclAllGather(const half*  send_buf,
                              half*        recv_buf,
                              const int    data_size,
                              const int    rank,
                              NcclParam    nccl_param,
                              cudaStream_t stream);

#ifdef ENABLE_BF16
template void ftNcclAllGather(const __nv_bfloat16* send_buf,
                              __nv_bfloat16*       recv_buf,
                              const int            data_size,
                              const int            rank,
                              NcclParam            nccl_param,
                              cudaStream_t         stream);
#endif

void ftNcclGroupStart()
{
#ifdef BUILD_MULTI_GPU
    NCCLCHECK(ncclGroupStart());
#endif
}

void ftNcclGroupEnd()
{
#ifdef BUILD_MULTI_GPU
    NCCLCHECK(ncclGroupEnd());
#endif
}

void ftNcclStreamSynchronize(NcclParam tensor_para, NcclParam pipeline_para, cudaStream_t stream)
{
    FT_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
#ifdef BUILD_MULTI_GPU
    cudaError_t  cudaErr;
    ncclResult_t tensor_ncclErr = ncclSuccess, tensor_ncclAsyncErr = ncclSuccess, pipeline_ncclErr = ncclSuccess,
                 pipeline_ncclAsyncErr = ncclSuccess;
    ncclComm_t tensor_comm             = tensor_para.nccl_comm_;
    ncclComm_t pipeline_comm           = pipeline_para.nccl_comm_;
    if (tensor_para.world_size_ == 1 && pipeline_para.world_size_ == 1) {
        check_cuda_error(cudaStreamSynchronize(stream));
        return;
    }
    while (1) {
        cudaErr = cudaStreamQuery(stream);
        if (cudaErr == cudaSuccess) {
            FT_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
            return;
        }

        if (cudaErr != cudaErrorNotReady) {
            std::string error_msg = "CUDA Error : cudaStreamQuery returned " + std::to_string(cudaErr);
            throw std::runtime_error(error_msg);
        }
        if (tensor_para.world_size_ > 1) {
            tensor_ncclErr = ncclCommGetAsyncError(tensor_comm, &tensor_ncclAsyncErr);
        }
        if (pipeline_para.world_size_ > 1) {
            pipeline_ncclErr = ncclCommGetAsyncError(pipeline_comm, &pipeline_ncclAsyncErr);
        }

        if (tensor_ncclErr != ncclSuccess || pipeline_ncclErr != ncclSuccess) {
            std::string error_msg = "NCCL Error : ncclCommGetAsyncError returned " + std::to_string(tensor_ncclErr)
                                    + " (tensor_para) " + std::to_string(pipeline_ncclErr) + " (pipeline_para)";
            throw std::runtime_error(error_msg);
        }

        if (tensor_ncclAsyncErr != ncclSuccess) {
            // An asynchronous error happened. Stop the operation and destroy
            // the communicator
            tensor_ncclErr = ncclCommAbort(tensor_comm);
            if (tensor_ncclErr != ncclSuccess) {
                std::string error_msg = "NCCL Error : ncclCommDestroy returned " + std::to_string(tensor_ncclErr);
                throw std::runtime_error(error_msg);
            }
        }

        if (pipeline_ncclAsyncErr != ncclSuccess) {
            // An asynchronous error happened. Stop the operation and destroy
            // the communicator
            pipeline_ncclErr = ncclCommAbort(pipeline_comm);
            if (pipeline_ncclErr != ncclSuccess) {
                std::string error_msg = "NCCL Error : ncclCommDestroy returned " + std::to_string(pipeline_ncclErr);
                throw std::runtime_error(error_msg);
            }
        }
    }
#endif
}

void ftNcclGetUniqueId(NcclUid& uid)
{
#ifdef BUILD_MULTI_GPU
    NCCLCHECK(ncclGetUniqueId(&uid.nccl_uid_));
#endif
}

void ftNcclCommInitRank(NcclParam& param, const int rank, const int world_size, const NcclUid uid)
{
    FT_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
#ifdef BUILD_MULTI_GPU
    // Initialize a nccl communicator.
    if (param.nccl_comm_ != nullptr) {
        FT_LOG_WARNING("NcclParam is already initialized.");
        return;
    }
    param.rank_       = rank;
    param.world_size_ = world_size;
    param.nccl_uid_   = uid.nccl_uid_;
    NCCLCHECK(ncclCommInitRank(&param.nccl_comm_, param.world_size_, param.nccl_uid_, param.rank_));
#endif
    FT_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}

void ftNcclParamDestroy(NcclParam& param)
{
#ifdef BUILD_MULTI_GPU
    if (param.nccl_comm_ != nullptr) {
        ncclCommDestroy(param.nccl_comm_);
    }
#endif
}

void ftNcclInitialize(NcclParam& tensor_para,
                      NcclParam& pipeline_para,
                      const int  tensor_para_size,
                      const int  pipeline_para_size)
{
    FT_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
    // Initialize nccl communication grid of tensor and pipeline parallel groups.
#ifndef BUILD_MULTI_GPU
    FT_CHECK_WITH_INFO(tensor_para_size == 1,
                       fmtstr("tensor_para_size=%d although BUILD_MULTI_GPU is disabled. "
                              "Please use the cmake flag -DBUILD_MULTI_GPU=ON if you want "
                              "to use tensor/pipeline parallelism.",
                              tensor_para_size));
    FT_CHECK_WITH_INFO(pipeline_para_size == 1,
                       fmtstr("pipeline_para_size=%d although BUILD_MULTI_GPU is disabled. "
                              "Please use the cmake flag -DBUILD_MULTI_GPU=ON if you want "
                              "to use tensor/pipeline parallelism.",
                              pipeline_para_size));
    tensor_para.rank_         = 0;
    tensor_para.world_size_   = tensor_para_size;
    pipeline_para.rank_       = 0;
    pipeline_para.world_size_ = pipeline_para_size;
#else
    // Initialize a nccl communicator.
    if (tensor_para.nccl_comm_ != nullptr && pipeline_para.nccl_comm_ != nullptr) {
        FT_LOG_WARNING("NcclParam is already initialized. Skip NCCL initialization.");
        return;
    }
    FT_CHECK(tensor_para.nccl_comm_ == nullptr);
    FT_CHECK(pipeline_para.nccl_comm_ == nullptr);
    FT_CHECK(tensor_para_size > 0);
    FT_CHECK(pipeline_para_size > 0);

    if (tensor_para_size == 1 && pipeline_para_size == 1) {
        FT_LOG_WARNING("Skip NCCL initialization since requested tensor/pipeline parallel sizes are equals to 1.");
        tensor_para.rank_         = 0;
        tensor_para.world_size_   = tensor_para_size;
        pipeline_para.rank_       = 0;
        pipeline_para.world_size_ = pipeline_para_size;
        return;
    }

    int mpi_initialized;
    MPICHECK(MPI_Initialized(&mpi_initialized));
    FT_CHECK_WITH_INFO(mpi_initialized, "Fail to nccl initialization because MPI is not initialized.");

    int rank, world_size;
    MPICHECK(MPI_Comm_rank(MPI_COMM_WORLD, &rank));
    MPICHECK(MPI_Comm_size(MPI_COMM_WORLD, &world_size));

    FT_CHECK_WITH_INFO(tensor_para_size * pipeline_para_size <= world_size,
                       fmtstr("tensor_para_size (%d) * pipeline_para_size (%d) should equal to the world size (%d).",
                              tensor_para_size,
                              pipeline_para_size,
                              world_size));

    // Convert WORLD communicator into 2D grid (k * n) communicator.
    //  row = a tensor parallel group, col = a pipeline parallel group.
    MPI_Comm grid_comm, tp_comm, pp_comm;

    int dims[2]    = {pipeline_para_size, tensor_para_size};
    int periods[2] = {0, 0};
    MPI_Cart_create(MPI_COMM_WORLD, 2, dims, periods, 0, &grid_comm);

    // Split 2D communicator into rows and cols.
    int tp_remain_dims[2] = {false, true};
    int pp_remain_dims[2] = {true, false};
    MPI_Cart_sub(grid_comm, tp_remain_dims, &tp_comm);
    MPI_Cart_sub(grid_comm, pp_remain_dims, &pp_comm);

    int tp_rank, pp_rank;
    MPI_Comm_rank(tp_comm, &tp_rank);
    MPI_Comm_rank(pp_comm, &pp_rank);

    ncclUniqueId tp_uid;
    ncclUniqueId pp_uid;
    // The root of each group creates a nccl uid.
    if (tp_rank == 0) {
        FT_LOG_DEBUG("rank %d pp rank %d creates nccl uid.", rank, tp_rank);
        NCCLCHECK(ncclGetUniqueId(&tp_uid));
    }
    if (pp_rank == 0) {
        FT_LOG_DEBUG("rank %d pp rank %d creates nccl uid.", rank, pp_rank);
        NCCLCHECK(ncclGetUniqueId(&pp_uid));
    }
    // Broadcast nccl uid to share the same nccl uid across gpus in the same group.
    FT_LOG_DEBUG("Broadcast nccl uid to the others in the same parallel groups.");
    MPI_Bcast(&tp_uid, sizeof(tp_uid), MPI_BYTE, 0, tp_comm);
    MPI_Bcast(&pp_uid, sizeof(pp_uid), MPI_BYTE, 0, pp_comm);

    FT_LOG_DEBUG("Initialize NCCL communicators.");
    ncclComm_t tp_nccl_comm, pp_nccl_comm;
    NCCLCHECK(ncclCommInitRank(&tp_nccl_comm, tensor_para_size, tp_uid, tp_rank));
    NCCLCHECK(ncclCommInitRank(&pp_nccl_comm, pipeline_para_size, pp_uid, pp_rank));

    tensor_para.world_size_   = tensor_para_size;
    tensor_para.rank_         = tp_rank;
    tensor_para.nccl_uid_     = tp_uid;
    tensor_para.nccl_comm_    = tp_nccl_comm;
    pipeline_para.world_size_ = pipeline_para_size;
    pipeline_para.rank_       = pp_rank;
    pipeline_para.nccl_uid_   = pp_uid;
    pipeline_para.nccl_comm_  = pp_nccl_comm;
    FT_LOG_INFO("NCCL initialized rank=%d world_size=%d tensor_para=%s pipeline_para=%s",
                rank,
                world_size,
                tensor_para.toString().c_str(),
                pipeline_para.toString().c_str());
#endif
    FT_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}

static std::atomic<int>& ncclGroupCount()
{
    static std::atomic<int> value{};
    return value;
}

int ftNcclNextGroupId()
{
    return ncclGroupCount()++;
}

int ftNcclGroupCount()
{
    return ncclGroupCount();
}

size_t getLocalBatchSize(const size_t batch_size, const size_t seq_len, const size_t pipeline_para_size)
{
    size_t local_batch_size = batch_size;
    if (pipeline_para_size == 1) {
        return local_batch_size;
    }
    if (local_batch_size % pipeline_para_size == 0) {
        local_batch_size /= pipeline_para_size;
    }
    while (local_batch_size * seq_len > 1024 && local_batch_size % 2 == 0) {
        local_batch_size /= 2;
    }
    return local_batch_size;
}

}  // namespace fastertransformer