cublasAlgoMap.h 3.79 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
/*
 * Copyright (c) 2019-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "src/fastertransformer/utils/cuda_utils.h"
#include <cublasLt.h>
#include <cublas_v2.h>
#include <cuda_runtime.h>
#include <map>
#include <string>
#include <unordered_map>
#include <utility>

#pragma once
namespace fastertransformer {

#define GEMM_NUM 6
#define GEMM_CONFIG "gemm_config.in"
#define IGEMM_CONFIG "igemm_config.in"
#define SPGEMM_CONFIG "spgemm_config.in"
#define SPIGEMM_CONFIG "spigemm_config.in"

typedef struct {
    int algoId, customOption, tile, splitK_val;
    int swizzle, reductionScheme, workspaceSize;
    // only used in cublasLt >= 11.0
    int stages;
#if (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH >= 3)
    uint16_t inner_shapeId, cluster_shapeId;
#elif (CUBLAS_VER_MAJOR == 11 && CUBLAS_VER_MINOR == 11 && CUBLAS_VER_PATCH < 3)
    uint16_t mma_shapeId, cga_shapeId, sche_mode;
#endif
    float exec_time;
} cublasLtMatmulAlgo_info;

/* Structure to store information about different run trials */
typedef struct {
    cublasLtMatmulAlgo_t      algo;
    cublasStatus_t            status;
    float                     time;
    size_t                    workspaceSize;  // actual memory workspace needed
    cublasMath_t              mathMode;
    cublasLtReductionScheme_t reductionScheme;
    int                       customOption;
    float                     wavesCount;
} customMatmulPerf_t;

struct cublasAlgoConfig_t {
    int            batch_count;
    int            m;
    int            n;
    int            k;
    CublasDataType data_type;
    bool           operator==(cublasAlgoConfig_t const& config) const
    {
        return (batch_count == config.batch_count) && (m == config.m) && (n == config.n) && (k == config.k)
               && (data_type == config.data_type);
    }
};

class cublasAlgoConfig_hasher {
public:
    std::size_t operator()(cublasAlgoConfig_t const& config) const
    {
        return config.batch_count * 98317ull ^ config.m * 49157ull ^ config.n * 24593ull ^ config.k * 196613ull
               ^ static_cast<int>(config.data_type) * 6151ull;
    }
};

class cublasAlgoMap {
private:
    std::unordered_map<cublasAlgoConfig_t, cublasLtMatmulAlgo_info, cublasAlgoConfig_hasher> algo_map_;
    std::string                                                                              config_filename_;
    std::string                                                                              sp_config_filename_;
    std::map<std::string, int>                                                               sp_algo_map_;

public:
    cublasAlgoMap(){};
    explicit cublasAlgoMap(const std::string filename, const std::string sp_config_filename = "");
    cublasAlgoMap(const cublasAlgoMap& map);
    ~cublasAlgoMap();
    void loadGemmConfig();
    void loadSpGemmConfig();
    int  getSpAlgo(const int batch_count, const int m, const int n, const int k);
    bool isUseSparse(const int batch_count, const int m, const int n, const int k);

    bool isExist(const int batch_count, const int m, const int n, const int k, const CublasDataType data_type);

    cublasLtMatmulAlgo_info
    getAlgo(const int batch_count, const int m, const int n, const int k, const CublasDataType data_type);
};

}  // namespace fastertransformer