TopPSamplingLayer.cu 17.8 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/*
 * Copyright (c) 2019-2023, NVIDIA CORPORATION.  All rights reserved.
 * Copyright (c) 2021, NAVER Corp.  Authored by CLOVA.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <algorithm>
#include <float.h>

#include "src/fastertransformer/kernels/reduce_kernel_utils.cuh"
#include "src/fastertransformer/kernels/sampling_topk_kernels.h"
#include "src/fastertransformer/kernels/sampling_topp_kernels.h"
#include "src/fastertransformer/layers/sampling_layers/TopPSamplingLayer.h"
#include "src/fastertransformer/utils/logger.h"
#include "src/fastertransformer/utils/memory_utils.h"

namespace fastertransformer {

static __global__ void set_topp_runtime_args(int             batch_size,
                                             uint            top_k,
                                             uint*           top_ks,
                                             int             top_ks_size,
                                             float           top_p,
                                             float*          top_ps,
                                             int             top_ps_size,
                                             bool*           skip_decode,
                                             float*          initial_top_p_buf,
                                             float*          top_p_decay_buf,
                                             const float*    top_p_decay,
                                             float*          top_p_min_buf,
                                             const float*    top_p_min,
                                             int32_t*        top_p_reset_ids_buf,
                                             const uint32_t* top_p_reset_ids)
{
    /**
     * @brief Setup the runtime arguments for topp, broadcasting top_p to top_ps
                and top_k to top_ks, copying top_p_decay/top_p_min/top_p_reset_ids
                to internal buffers.
     *
     * \param batch_size            [batch_size]
     * \param op_k                  [batch_size]
     * \param top_ks                [batch_size]
     * \param top_ks_size           [batch_size]
     * \param top_p                 [batch_size]
     * \param top_ps                [batch_size]
     * \param top_ps_size           [batch_size]
     * \param skip_decode           [batch_size]
     * \param initial_top_p_buf     [batch_size]
     * \param top_p_decay_buf       [batch_size]
     * \param top_p_decay           [batch_size], optional, must between [0, 1]
     * \param top_p_min_buf         [batch_size]
     * \param top_p_min             [batch_size], optional, must between [0, 1]
     * \param top_p_reset_ids_buf    [batch_size]
     * \param top_p_reset_ids        [batch_size], optional
     *
     */

    int index = blockIdx.x * blockDim.x + threadIdx.x;
    for (int i = index; i < batch_size; i += gridDim.x * blockDim.x) {
        uint  k = top_ks_size > 1 ? top_ks[i] : top_k;
        float p = top_ps_size > 1 ? top_ps[i] : top_p;
        if (k == 0 && p == 0.0f) {
            // FT's topp implementation does not support topp = 0.0f, but it equivalent to greedy search.
            // So, we set the topk = 1 as an alternative solution.
            k = 1;
        }
        top_ks[i] = k;
        // Clip p value if it is out of range. range = [0.0, 1.0].
        top_ps[i] = p < 0.0f ? 0.0f : (p > 1.0f ? 1.0f : p);
        if (p < 0.0f || p > 1.0f) {
            printf("[WARNING] topp (%f) is out of range ([0.0, 1.0f]) for token %d"
                   " clip to closest number %f.\n",
                   p,
                   i,
                   top_ps[i]);
        }
        skip_decode[i] = k > 0;

        initial_top_p_buf[i] = top_ps[i];
        top_p_decay_buf[i]   = top_p_decay == nullptr ? 1.0f : top_p_decay[i];
        if (top_p_decay_buf[i] > 1.0f || top_p_decay_buf[i] <= 0.0f) {
            printf("[WARNING] top_p_decay_buf (%f) is out of range ([0.0, 1.0f]) for token %d,"
                   " change to 1.0f.\n",
                   top_p_decay_buf[i],
                   i);
            top_p_decay_buf[i] = 1.0f;
        }
        top_p_min_buf[i] = top_p_min == nullptr ? 1e-6f : top_p_min[i];  // prevent topp becoming 0.0
        if (top_p_min_buf[i] > 1.0f || top_p_min_buf[i] <= 0.0f) {
            printf("[WARNING] top_p_min_buf (%f) is out of range ([0.0, 1.0f]) for token %d,"
                   " change to 0.5f.\n",
                   top_p_min_buf[i],
                   i);
            top_p_min_buf[i] = 0.5f;
        }
        top_p_reset_ids_buf[i] = (int32_t)(top_p_reset_ids == nullptr ? -1 : top_p_reset_ids[i]);
    }
}

template<typename T>
void TopPSamplingLayer<T>::allocateBuffer()
{
    FT_CHECK(false);
}

template<typename T>
void TopPSamplingLayer<T>::allocateBuffer(size_t batch_size, Tensor top_k, Tensor top_p)
{
    FT_LOG_DEBUG(__PRETTY_FUNCTION__);
    BaseSamplingLayer<T>::allocateBuffer(batch_size, top_k, top_p);
    invokeTopPSampling<T>(nullptr,  // workspace
                          sampling_workspace_size_,
                          cub_temp_storage_size_,
                          nullptr,  // output_ids
                          nullptr,  // sequence_length
                          nullptr,  // finished_buffer
                          nullptr,  // cum_log_probs
                          nullptr,  // output_log_probs
                          nullptr,  // log_probs
                          topp_id_vals_buf_,
                          topp_offset_buf_,
                          begin_topp_offset_buf_,
                          curandstate_buf_,
                          batch_size,
                          vocab_size_padded_,
                          nullptr,
                          top_p.size() > 0 ? top_p.max<float>() : 0.0f,
                          stream_,
                          cuda_device_prop_,
                          skip_decode_buf_);
    sampling_workspace_ = allocator_->reMalloc(sampling_workspace_, sampling_workspace_size_, true);
    runtime_top_k_buf_ =
        reinterpret_cast<uint*>(allocator_->reMalloc(runtime_top_k_buf_, sizeof(uint) * batch_size, false));
    runtime_top_p_buf_ =
        reinterpret_cast<float*>(allocator_->reMalloc(runtime_top_p_buf_, sizeof(float) * batch_size, false));
    initial_top_p_buf_ =
        reinterpret_cast<float*>(allocator_->reMalloc(initial_top_p_buf_, sizeof(float) * batch_size, false));
    top_p_decay_buf_ =
        reinterpret_cast<float*>(allocator_->reMalloc(top_p_decay_buf_, sizeof(float) * batch_size, false));
    top_p_min_buf_ = reinterpret_cast<float*>(allocator_->reMalloc(top_p_min_buf_, sizeof(float) * batch_size, false));
    top_p_reset_ids_buf_ =
        reinterpret_cast<int32_t*>(allocator_->reMalloc(top_p_reset_ids_buf_, sizeof(int32_t) * batch_size, false));
    topp_id_vals_buf_ = reinterpret_cast<int*>(
        allocator_->reMalloc(topp_id_vals_buf_, sizeof(int) * batch_size * vocab_size_padded_, false));
    topp_offset_buf_ =
        reinterpret_cast<int*>(allocator_->reMalloc(topp_offset_buf_, sizeof(int) * (batch_size + 1), false));
    begin_topp_offset_buf_ =
        reinterpret_cast<int*>(allocator_->reMalloc(begin_topp_offset_buf_, sizeof(int) * (batch_size + 1), false));
    is_allocate_buffer_ = true;
}

template<typename T>
void TopPSamplingLayer<T>::freeBuffer()
{
    FT_LOG_DEBUG(__PRETTY_FUNCTION__);
    if (is_allocate_buffer_) {
        allocator_->free((void**)(&sampling_workspace_));
        allocator_->free((void**)(&topp_id_vals_buf_));
        allocator_->free((void**)(&topp_offset_buf_));
        allocator_->free((void**)(&begin_topp_offset_buf_));
        allocator_->free((void**)(&runtime_top_k_buf_));
        allocator_->free((void**)(&runtime_top_p_buf_));
        allocator_->free((void**)(&initial_top_p_buf_));
        allocator_->free((void**)(&top_p_decay_buf_));
        allocator_->free((void**)(&top_p_min_buf_));
        allocator_->free((void**)(&top_p_reset_ids_buf_));
    }
    BaseSamplingLayer<T>::freeBuffer();
    is_allocate_buffer_ = false;
}

template<typename T>
void TopPSamplingLayer<T>::setup(const size_t batch_size, const size_t beam_width, TensorMap* runtime_args)
{
    /**
    * @brief Set up the sampling layer for given runtime arguments.

    * runtime_args:
    *   \param  runtime_top_k [1] or [batch_size] on cpu, optional.
    *   \param  runtime_top_p [1] or [batch_size] on cpu, optional
    *   \param  temperature [1] or [batch_size] on cpu, optional
    *   \param  repetition_penalty [1] or [batch_size] on cpu, optional
    *   \param  top_p_decay [batch_size] on gpu, float, optional
    *   \param  top_p_min [batch_size] on gpu, float, optional
    *   \param  top_p_reset_ids [batch_size] on gpu, uint32, optional
    **/

    FT_LOG_DEBUG(__PRETTY_FUNCTION__);
    BaseSamplingLayer<T>::setup(batch_size, beam_width, runtime_args);
    const Tensor runtime_top_p = runtime_args->isExist("runtime_top_p") ? runtime_args->at("runtime_top_p") : Tensor();
    const size_t runtime_top_p_size = runtime_top_p.size();
    if (runtime_top_p_size == 0) {
        std::fill_n(skip_decode_, batch_size, true);
        return;
    }

    uint         tmp_top_k          = 0;
    const Tensor runtime_top_k      = runtime_args->isExist("runtime_top_k") ?
                                          runtime_args->at("runtime_top_k") :
                                          Tensor(MEMORY_CPU, TYPE_UINT32, {1}, &tmp_top_k);
    const size_t runtime_top_k_size = runtime_top_k.size();

    uint  top_k = runtime_top_k.getVal<uint>();
    float top_p = runtime_top_p.getVal<float>();

    if (runtime_top_k_size > 1) {
        FT_CHECK(runtime_top_k.size() == batch_size);
        cudaH2Dcpy(runtime_top_k_buf_, runtime_top_k.getPtr<uint>(), batch_size);
    }
    if (runtime_top_p_size > 1) {
        FT_CHECK(runtime_top_p.size() == batch_size);
        cudaH2Dcpy(runtime_top_p_buf_, runtime_top_p.getPtr<float>(), batch_size);
    }

    dim3 block(std::min((int)batch_size, 256));
    dim3 grid(div_up((int)batch_size, (int)block.x));

    const float*    top_p_decay     = runtime_args->getPtr<float>("top_p_decay", nullptr);
    const float*    top_p_min       = runtime_args->getPtr<float>("top_p_min", nullptr);
    const uint32_t* top_p_reset_ids = runtime_args->getPtr<uint32_t>("top_p_reset_ids", nullptr);
    set_topp_runtime_args<<<grid, block, 0, stream_>>>(batch_size,
                                                       top_k,
                                                       runtime_top_k_buf_,
                                                       runtime_top_k_size,
                                                       top_p,
                                                       runtime_top_p_buf_,
                                                       runtime_top_p_size,
                                                       skip_decode_buf_,
                                                       initial_top_p_buf_,
                                                       top_p_decay_buf_,
                                                       top_p_decay,
                                                       top_p_min_buf_,
                                                       top_p_min,
                                                       top_p_reset_ids_buf_,
                                                       top_p_reset_ids);
    sync_check_cuda_error();
    cudaAutoCpy(skip_decode_, skip_decode_buf_, batch_size, stream_);
    float* runtime_top_ps = new float[batch_size];
    cudaAutoCpy(runtime_top_ps, runtime_top_p_buf_, batch_size, stream_);
    runtime_max_top_p_ = *std::max_element(runtime_top_ps, runtime_top_ps + batch_size);
    delete[] runtime_top_ps;
}

template<typename T>
void TopPSamplingLayer<T>::runSampling(TensorMap* output_tensors, TensorMap* input_tensors)
{
    /**
    * input_tensors:
    *   \param  logits [local_batch_size, vocab_size_padded]
    *   \param  embedding_bias [vocab_size_padded], optional
    *   \param  step [1] on cpu
    *   \param  max_input_length [1] on cpu
    *   \param  input_lengths [local_batch_size], optional
    *   \param  ite [1] on cpu

    * output_tensors:
    *   \param  output_ids [max_seq_len, batch_size]
    *   \param  finished [local_batch_size], optional
    *   \param  sequence_length [local_batch_size], optional
    *   \param  cum_log_probs [batch_size], must be float*, optional
    *   \param  The cumultative log probability of generated tokens.
    *   \param  output_log_probs [local_batch_size], must be float*, optional
                    log probs at the current step.
    **/

    FT_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
    FT_CHECK(input_tensors->size() >= 4);
    FT_CHECK(output_tensors->size() >= 1);

    const int batch_size       = output_tensors->at("output_ids").shape[1];
    const int local_batch_size = input_tensors->at("logits").shape[0];
    const int step             = input_tensors->at("step").getVal<int>();
    const int ite              = input_tensors->at("ite").getVal<int>();

    // in case of skip any, the logit value is already copied and processed.
    T* logits = !skip_any_ ? input_tensors->at("logits").getPtr<T>() : runtime_logits_buf_;

    invokeTopPInitialize(
        topp_id_vals_buf_, topp_offset_buf_, begin_topp_offset_buf_, local_batch_size, vocab_size_padded_, stream_);
    sync_check_cuda_error();

    invokeAddBiasSoftMax(logits,
                         (T*)(nullptr),
                         input_tensors->at("end_id").getPtr<int>(),
                         output_tensors->at("finished", Tensor{MEMORY_GPU, TYPE_INVALID, {}, nullptr}).getPtr<bool>(),
                         local_batch_size,
                         vocab_size_padded_,
                         vocab_size_,
                         stream_);
    sync_check_cuda_error();

    float* cum_log_probs =
        output_tensors->isExist("cum_log_probs") ? output_tensors->at("cum_log_probs").getPtr<float>() : nullptr;
    float* output_log_probs =
        output_tensors->isExist("output_log_probs") ? output_tensors->at("output_log_probs").getPtr<float>() : nullptr;

    invokeBatchTopPSampling<T>(
        sampling_workspace_,
        sampling_workspace_size_,
        cub_temp_storage_size_,
        output_tensors->at("output_ids").getPtrWithOffset<int>(step * batch_size + ite * local_batch_size),
        output_tensors->at("sequence_length", Tensor{MEMORY_GPU, TYPE_INVALID, {}, nullptr}).getPtr<int>(),
        output_tensors->at("finished", Tensor{MEMORY_GPU, TYPE_INVALID, {}, nullptr}).getPtr<bool>(),
        cum_log_probs,
        output_log_probs,
        logits,
        topp_id_vals_buf_,
        topp_offset_buf_,
        begin_topp_offset_buf_,
        curandstate_buf_ + ite * local_batch_size,
        local_batch_size,
        vocab_size_padded_,
        input_tensors->at("end_id").getPtr<int>(),
        runtime_max_top_p_,
        runtime_top_p_buf_ + ite * local_batch_size,
        stream_,
        cuda_device_prop_,
        skip_decode_buf_ + ite * local_batch_size);
    sync_check_cuda_error();

    invokeComputeToppDecay(
        runtime_top_p_buf_ + ite * local_batch_size,
        initial_top_p_buf_ + ite * local_batch_size,
        output_tensors->getPtrWithOffset<int>("output_ids", step * batch_size + ite * local_batch_size),
        top_p_decay_buf_ + ite * local_batch_size,
        top_p_min_buf_ + ite * local_batch_size,
        top_p_reset_ids_buf_ + ite * local_batch_size,
        local_batch_size,
        stream_);
    sync_check_cuda_error();
    FT_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}

template<typename T>
TopPSamplingLayer<T>::TopPSamplingLayer(size_t             max_batch_size,
                                        size_t             vocab_size,
                                        size_t             vocab_size_padded,
                                        int                end_id,
                                        float              top_p,
                                        unsigned long long random_seed,
                                        float              temperature,
                                        float              len_penalty,
                                        float              repetition_penalty,
                                        cudaStream_t       stream,
                                        cublasMMWrapper*   cublas_wrapper,
                                        IAllocator*        allocator,
                                        bool               is_free_buffer_after_forward,
                                        cudaDeviceProp*    cuda_device_prop):
    BaseSamplingLayer<T>(max_batch_size,
                         vocab_size,
                         vocab_size_padded,
                         end_id,
                         0,
                         top_p,
                         random_seed,
                         temperature,
                         len_penalty,
                         repetition_penalty,
                         stream,
                         cublas_wrapper,
                         allocator,
                         is_free_buffer_after_forward,
                         cuda_device_prop)
{
}

template<typename T>
TopPSamplingLayer<T>::TopPSamplingLayer(TopPSamplingLayer<T> const& top_p_sampling_layer):
    BaseSamplingLayer<T>(top_p_sampling_layer)
{
}

template<typename T>
TopPSamplingLayer<T>::~TopPSamplingLayer()
{
    freeBuffer();
}

template class TopPSamplingLayer<float>;
template class TopPSamplingLayer<half>;

}  // namespace fastertransformer