Tensor.cc 17 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/*
 * Copyright (c) 2019-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

lvhan028's avatar
lvhan028 committed
17
18
19
20
#include "src/turbomind/utils/Tensor.h"
#include "src/turbomind/utils/cuda_bf16_wrapper.h"
#include "src/turbomind/utils/cuda_utils.h"
#include "src/turbomind/utils/string_utils.h"
Li Zhang's avatar
Li Zhang committed
21
22
23
24
25
26
27
28
29
30
31
32
33

#include "stdlib.h"
#include <cuda_fp16.h>
#include <cuda_runtime_api.h>
#include <dirent.h>
#include <numeric>
#include <stdlib.h>
#include <string>
#include <sys/stat.h>
#include <sys/types.h>
#include <unordered_map>
#include <vector>

lvhan028's avatar
lvhan028 committed
34
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

Tensor::Tensor():
    // a none tensor.
    where(MEMORY_CPU),
    type(TYPE_INVALID),
    shape({}),
    data(nullptr),
    offsets({})  // only a record to record offset
{
}

Tensor::Tensor(const MemoryType _where, const DataType _type, const std::vector<size_t> _shape, const void* _data):
    where(_where), type(_type), shape(_shape), data(_data)
{
}

Tensor::Tensor(const MemoryType          _where,
               const DataType            _type,
               const std::vector<size_t> _shape,
               const void*               _data,
               const std::vector<size_t> _offset):
    where(_where), type(_type), shape(_shape), data(_data), offsets(_offset)
{
}

void Tensor::parseNpyIntro(FILE*& f_ptr, uint32_t& header_len, uint32_t& start_data)
{
    const char magic[]                   = "\x93"
                                           "NUMPY";
    char       magic_test[sizeof(magic)] = "\0";

    size_t n_elems = fread((void*)magic_test, sizeof(char), sizeof(magic) - 1, f_ptr);
    if (n_elems != sizeof(magic) - 1 || std::string(magic) != std::string(magic_test)) {
        throw std::runtime_error("Could read magic token in NPY file");
    }

    uint8_t npy_major = 0;
    uint8_t npy_minor = 0;
    n_elems           = fread((void*)&npy_major, sizeof(uint8_t), 1, f_ptr);
    n_elems += fread((void*)&npy_minor, sizeof(uint8_t), 1, f_ptr);

    if (npy_major == 1) {
        uint16_t header_len_u16 = 0;
        n_elems                 = fread((void*)&header_len_u16, sizeof(uint16_t), 1, f_ptr);
        header_len              = header_len_u16;
    }
    else if (npy_major == 2) {
        uint32_t header_len_u32 = 0;
        n_elems                 = fread((void*)&header_len_u32, sizeof(uint32_t), 1, f_ptr);
        header_len              = header_len_u32;
    }
    else {
        throw std::runtime_error("Unsupported npy version: " + std::to_string(npy_major));
    }

    start_data = 8 + 2 * npy_major + header_len;
}

int Tensor::parseNpyHeader(FILE*& f_ptr, uint32_t header_len, DataType& type, std::vector<size_t>& shape)
{
    char*  header_c = (char*)malloc(header_len * sizeof(char));
    size_t n_elems  = fread((void*)header_c, sizeof(char), header_len, f_ptr);
    if (n_elems != header_len) {
        free(header_c);
        return -1;
    }
    std::string header(header_c, header_len);
    free(header_c);

    size_t start, end;
    start = header.find("'descr'") + 7;
    start = header.find("'", start);
    end   = header.find("'", start + 1);
    type  = typeFromNumpyDesc(header.substr(start + 1, end - start - 1));

    start = header.find("'fortran_order'") + 15;
    start = header.find(":", start);
    end   = header.find(",", start + 1);
    if (header.substr(start + 1, end - start - 1).find("False") == std::string::npos) {
        throw std::runtime_error("Unsupported value for fortran_order while reading npy file");
    }

    start = header.find("'shape'") + 7;
    start = header.find("(", start);
    end   = header.find(")", start + 1);

    std::istringstream shape_stream(header.substr(start + 1, end - start - 1));
    std::string        token;

    shape.clear();
    while (std::getline(shape_stream, token, ',')) {
        if (token.find_first_not_of(' ') == std::string::npos) {
            break;
        }
        shape.push_back(std::stoul(token));
    }

    return 0;
}

Tensor Tensor::loadNpy(const std::string& npy_file, const MemoryType where)
{
    DataType            type;
    std::vector<size_t> shape;

    FILE* f_ptr = fopen(npy_file.c_str(), "rb");
    if (f_ptr == nullptr) {
        throw std::runtime_error("Could not open file " + npy_file);
    }
    uint32_t header_len, start_data;
    parseNpyIntro(f_ptr, header_len, start_data);
    parseNpyHeader(f_ptr, header_len, type, shape);

    const size_t size     = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<size_t>());
    void*        data_cpu = malloc(size * Tensor::getTypeSize(type));
    void*        data     = data_cpu;

    size_t n_elems = fread(data_cpu, Tensor::getTypeSize(type), size, f_ptr);
    FT_CHECK_WITH_INFO(n_elems == size, "reading tensor failed");
    if (where == MEMORY_GPU) {
        cudaMalloc(&data, size * Tensor::getTypeSize(type));
        cudaMemcpy(data, data_cpu, size * Tensor::getTypeSize(type), cudaMemcpyHostToDevice);
        free(data_cpu);
    }

    fclose(f_ptr);
    return Tensor(where, type, shape, data);
}

size_t Tensor::size() const
{
    if (data == nullptr || shape.size() == 0) {
        return 0;
    }
    return std::accumulate(shape.begin(), shape.end(), (size_t)1, std::multiplies<size_t>());
}

size_t Tensor::sizeBytes() const
{
    return size() * Tensor::getTypeSize(type);
}

std::string Tensor::whereToString() const
{
    static const std::unordered_map<MemoryType, std::string> mem_to_string{
        {MEMORY_CPU, "CPU"}, {MEMORY_CPU_PINNED, "CPU_PINNED"}, {MEMORY_GPU, "GPU"}};
    return mem_to_string.at(where);
}

std::string Tensor::toString() const
{
    std::string memtype_str = whereToString();

    static const std::unordered_map<DataType, std::string> type_to_string{
        {TYPE_BOOL, "BOOL"},
        {TYPE_UINT8, "UINT8"},
        {TYPE_UINT16, "UINT16"},
        {TYPE_UINT32, "UINT32"},
        {TYPE_UINT64, "UINT64"},
        {TYPE_INT8, "INT8"},
        {TYPE_INT16, "INT16"},
        {TYPE_INT32, "INT32"},
        {TYPE_INT64, "INT64"},
        {TYPE_BF16, "BF16"},
        {TYPE_FP16, "FP16"},
        {TYPE_FP32, "FP32"},
        {TYPE_FP64, "FP64"},
        {TYPE_BYTES, "BYTES"},
        {TYPE_INVALID, "INVALID"},
        {TYPE_FP8_E4M3, "E4M3"},
        {TYPE_VOID, "VOID"},
    };
    return fmtstr("Tensor[where=%s, type=%s, shape=%s, data=%p]",
                  memtype_str.c_str(),
                  type_to_string.at(type).c_str(),
                  vec2str(shape).c_str(),
                  data);
}

DataType Tensor::typeFromNumpyDesc(std::string type)
{
    static const std::unordered_map<std::string, DataType> type_map{{"?", TYPE_BOOL},
                                                                    {"b", TYPE_BYTES},
                                                                    {"u1", TYPE_UINT8},
                                                                    {"u2", TYPE_UINT16},
                                                                    {"u4", TYPE_UINT32},
                                                                    {"u8", TYPE_UINT64},
                                                                    {"i1", TYPE_INT8},
                                                                    {"i2", TYPE_INT16},
                                                                    {"i4", TYPE_INT32},
                                                                    {"i8", TYPE_INT64},
                                                                    {"f2", TYPE_FP16},
                                                                    {"f4", TYPE_FP32},
                                                                    {"f8", TYPE_FP64}};
    return type_map.at(type);
}

size_t Tensor::getTypeSize(DataType type)
{
    static const std::unordered_map<DataType, size_t> type_map{{TYPE_BOOL, sizeof(bool)},
                                                               {TYPE_BYTES, sizeof(char)},
                                                               {TYPE_UINT8, sizeof(uint8_t)},
                                                               {TYPE_UINT16, sizeof(uint16_t)},
                                                               {TYPE_UINT32, sizeof(uint32_t)},
                                                               {TYPE_UINT64, sizeof(uint64_t)},
                                                               {TYPE_INT8, sizeof(int8_t)},
                                                               {TYPE_INT16, sizeof(int16_t)},
                                                               {TYPE_INT32, sizeof(int32_t)},
                                                               {TYPE_INT64, sizeof(int64_t)},
#ifdef ENABLE_BF16
                                                               {TYPE_BF16, sizeof(__nv_bfloat16)},
#endif
#ifdef ENABLE_FP8
                                                               {TYPE_FP8_E4M3, sizeof(__nv_fp8_e4m3)},
#endif
                                                               {TYPE_FP16, sizeof(half)},
                                                               {TYPE_FP32, sizeof(float)},
                                                               {TYPE_FP64, sizeof(double)}};
    return type_map.at(type);
}

std::string Tensor::getNumpyTypeDesc(DataType type) const
{
    static const std::unordered_map<DataType, std::string> type_map{{TYPE_INVALID, "x"},
                                                                    {TYPE_BOOL, "?"},
                                                                    {TYPE_BYTES, "b"},
                                                                    {TYPE_UINT8, "u1"},
                                                                    {TYPE_UINT16, "u2"},
                                                                    {TYPE_UINT32, "u4"},
                                                                    {TYPE_UINT64, "u8"},
                                                                    {TYPE_INT8, "i1"},
                                                                    {TYPE_INT16, "i2"},
                                                                    {TYPE_INT32, "i4"},
                                                                    {TYPE_INT64, "i8"},
                                                                    {TYPE_FP16, "f2"},
                                                                    {TYPE_FP32, "f4"},
                                                                    {TYPE_FP64, "f8"}};

    if (type == TYPE_BF16) {
lvhan028's avatar
lvhan028 committed
274
        TM_LOG_WARNING("getNumpyTypeDesc(TYPE_BF16) returns an invalid type 'x' since Numpy doesn't "
Li Zhang's avatar
Li Zhang committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
                       "support bfloat16 as of now, it will be properly extended if numpy supports. "
                       "Please refer for the discussions https://github.com/numpy/numpy/issues/19808.");
    }

    return type_map.count(type) > 0 ? type_map.at(type) : "x";
}

void Tensor::saveNpy(const std::string& filename) const
{
    // Save tensor to NPY 1.0 format (see https://numpy.org/neps/nep-0001-npy-format.html)
    void*  cpu_data     = (void*)data;
    bool   is_data_temp = false;
    size_t tensor_size  = size();
    if (where == MemoryType::MEMORY_GPU) {
        cpu_data     = malloc(tensor_size * Tensor::getTypeSize(type));
        is_data_temp = true;
        cudaDeviceSynchronize();
        cudaMemcpy(cpu_data, data, tensor_size * Tensor::getTypeSize(type), cudaMemcpyDeviceToHost);
    }

    const char    magic[]   = "\x93"
                              "NUMPY";
    const uint8_t npy_major = 1;
    const uint8_t npy_minor = 0;

    std::stringstream header_stream;
    header_stream << "{'descr': '" << getNumpyTypeDesc(type) << "', 'fortran_order': False, 'shape': (";
    for (size_t i = 0; i < shape.size(); ++i) {
        header_stream << shape[i];
        if (i + 1 < shape.size() || shape.size() == 1) {
            header_stream << ", ";
        }
    }
    header_stream << ")}";
    int base_length = 6 + 4 + header_stream.str().size();
    int pad_length  = 16 * ((base_length + 1 + 15) / 16);  // Take ceiling of base_length + 1 (for '\n' ending)
    for (int i = 0; i < pad_length - base_length; ++i) {
        header_stream << ((i == pad_length - base_length - 1) ? "\n" : "\x20");
    }
    std::string    header     = header_stream.str();
    const uint16_t header_len = header.size();

    FILE* f_ptr = fopen(filename.c_str(), "wb");
    FT_CHECK_WITH_INFO(f_ptr != nullptr, fmtstr("Unable to open %s for writing.\n", filename.c_str()));

    fwrite(magic, sizeof(char), sizeof(magic) - 1, f_ptr);
    fwrite(&npy_major, sizeof(uint8_t), 1, f_ptr);
    fwrite(&npy_minor, sizeof(uint8_t), 1, f_ptr);
    fwrite(&header_len, sizeof(uint16_t), 1, f_ptr);
    fwrite(header.c_str(), sizeof(char), header_len, f_ptr);
    fwrite(cpu_data, Tensor::getTypeSize(type), tensor_size, f_ptr);

    fclose(f_ptr);

    if (is_data_temp) {
        free(cpu_data);
    }
}

Tensor Tensor::slice(std::vector<size_t> shape, size_t offset) const
{
    if (this->data != nullptr) {
        size_t n_elts        = this->size();
        size_t n_sliced_elts = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<size_t>());
        FT_CHECK_WITH_INFO(
            n_sliced_elts + offset <= n_elts,
            fmtstr("The number (%ld) of elements of sliced tensor exceeds that (%ld) of the original tensor",
                   n_sliced_elts + offset,
                   n_elts));
    }
    return Tensor(this->where, this->type, shape, this->getPtrWithOffset(offset));
}

TensorMap::TensorMap(const std::unordered_map<std::string, Tensor>& tensor_map)
{
    for (auto& kv : tensor_map) {
        if (isValid(kv.second)) {
            insert(kv.first, kv.second);
        }
        else {
lvhan028's avatar
lvhan028 committed
355
            TM_LOG_DEBUG(fmtstr("%s is not a valid tensor, skipping insert into TensorMap", kv.first.c_str()));
Li Zhang's avatar
Li Zhang committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
        }
    }
}

TensorMap::TensorMap(const std::vector<Tensor>& tensor_map)
{
    for (size_t i = 0; i < tensor_map.size(); i++) {
        insert(std::to_string(i), tensor_map[i]);
    }
}

TensorMap::TensorMap(std::initializer_list<std::pair<std::string, Tensor>> tensor_map)
{
    for (auto& pair : tensor_map) {
        if (isValid(pair.second)) {
            insert(pair.first, pair.second);
        }
        else {
lvhan028's avatar
lvhan028 committed
374
            TM_LOG_DEBUG(fmtstr("%s is not a valid tensor, skipping insert into TensorMap", pair.first.c_str()));
Li Zhang's avatar
Li Zhang committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        }
    }
}

TensorMap::~TensorMap()
{
    tensor_map_.clear();
}

std::vector<std::string> TensorMap::keys() const
{
    std::vector<std::string> key_names;
    for (auto& kv : tensor_map_) {
        key_names.push_back(kv.first);
    }
    return key_names;
}

std::string TensorMap::toString()
{
    std::stringstream ss;
    ss << "{";
    std::vector<std::string> key_names = keys();
    for (size_t i = 0; i < tensor_map_.size(); ++i) {
        ss << key_names[i] << ": " << at(key_names[i]).toString();
        if (i < tensor_map_.size() - 1) {
            ss << ", ";
        }
    }
    ss << "}";
    return ss.str();
}

TensorMap TensorMap::fromNpyFolder(const std::string& base_folder)
{
    DIR* dir_p = opendir(base_folder.c_str());
    FT_CHECK_WITH_INFO(dir_p != nullptr, fmtstr("Could not open folder %s. ", base_folder.c_str()));
    struct dirent* dp;

    TensorMap ret_tensor;
    while ((dp = readdir(dir_p)) != nullptr) {
        std::string filename(dp->d_name);
        size_t      len = filename.length();
        if (len < 4 || filename.compare(len - 4, 4, ".npy")) {
            continue;
        }

        size_t pos = filename.find('-');
        FT_CHECK_WITH_INFO(pos != std::string::npos, fmtstr("Invalid filename: %s\n", filename.c_str()));

        MemoryType where;
        if (filename.compare(0, pos, "GPU") == 0) {
            where = MEMORY_GPU;
        }
        else if (filename.compare(0, pos, "CPU") == 0) {
            where = MEMORY_CPU;
        }
        else if (filename.compare(0, pos, "CPU_PINNED") == 0) {
            where = MEMORY_CPU_PINNED;
        }
        else {
            FT_CHECK_WITH_INFO(false, fmtstr("Invalid filename: %s\n", filename.c_str()));
        }
        std::string key = filename.substr(pos + 1, len - pos - 5);

        ret_tensor.tensor_map_.insert({key, Tensor::loadNpy(base_folder + "/" + filename, where)});
    }

    closedir(dir_p);

    return ret_tensor;
}

void TensorMap::saveNpy(const std::string& base_folder)
{
    mode_t mode_0755 = S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH;
    int    ret       = mkdir(base_folder.c_str(), mode_0755);
    FT_CHECK_WITH_INFO(ret == 0 || errno == EEXIST, fmtstr("Could not create folder %s.\n", base_folder.c_str()));

    for (const auto& item : tensor_map_) {
        item.second.saveNpy(base_folder + "/" + item.second.whereToString() + "-" + item.first + ".npy");
    }
}

lvhan028's avatar
lvhan028 committed
459
}  // namespace turbomind