llama_kernels.h 7.93 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
// Copyright (c) OpenMMLab. All rights reserved.

#pragma once

lvhan028's avatar
lvhan028 committed
5
6
7
#include "src/turbomind/kernels/gpt_kernels.h"
#include "src/turbomind/utils/cuda_bf16_wrapper.h"
#include "src/turbomind/utils/cuda_utils.h"
Li Zhang's avatar
Li Zhang committed
8
9
10
11
12
#include <assert.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <numeric>

lvhan028's avatar
lvhan028 committed
13
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

template<typename T>
void invokeRootMeanSquareNorm(T* out, const T* input, const T* scale, float eps, int m, int n, cudaStream_t stream);

template<typename T>
void invokeAddResidual(T* out, const T* in, int m, int n, cudaStream_t stream);

void invokeFixInputIds(int*         ids,
                       const int*   input_ids,
                       const int*   input_lengths,
                       int          batch_size,
                       int          seq_len,
                       int          max_input_len,
                       cudaStream_t st);

template<typename T>
void invokeSliceCausalMask(T* mask, int seq_len, int key_len, int step, int batch_size, cudaStream_t stream);

template<typename T>
void invokeCreateCausalMasks(
    T* mask, const int* q_lens, const int* k_lens, int max_q_len, int max_k_len, int batch_size, cudaStream_t stream);

template<typename T>
Li Zhang's avatar
Li Zhang committed
37
38
void invokeExtendKVCache(void**       k_dst_ptrs,
                         void**       v_dst_ptrs,
Li Zhang's avatar
Li Zhang committed
39
40
                         const T*     k_src,
                         const T*     v_src,
Li Zhang's avatar
Li Zhang committed
41
                         const int*   cu_block_counts,
Li Zhang's avatar
Li Zhang committed
42
                         const int*   query_length,
Li Zhang's avatar
Li Zhang committed
43
44
45
46
                         const int*   context_length,
                         int          batch_size,
                         int          block_length,
                         size_t       dst_layer_offset,
Li Zhang's avatar
Li Zhang committed
47
                         int          max_q_len,
Li Zhang's avatar
Li Zhang committed
48
49
                         int          head_dim,
                         int          head_num,
50
                         int          quant,
Li Zhang's avatar
Li Zhang committed
51
52
                         const float* kv_scale,
                         cudaStream_t stream);
Li Zhang's avatar
Li Zhang committed
53
54
55
56
57
58
59
60
61
62
63
64
65

template<typename T>
void invokeTransposeKVCache(T*           key_cache_trans,
                            T*           val_cache_trans,
                            const T**    key_cache,
                            const T**    val_cache,
                            size_t       layer_offset,
                            int          batch_size,
                            const int*   key_length,
                            int          max_kv_len,
                            int          max_seq_len,
                            int          size_per_head,
                            int          head_num,
66
                            int          head_n_rep,
67
68
69
                            cudaStream_t stream,
                            int          quant_policy,
                            const float* kv_scale);
Li Zhang's avatar
Li Zhang committed
70
71
72
73
74
75
76
77
78
79

void invokeGatherOutput(int*         output_ids,
                        const int*   ids,
                        const int*   context_length,
                        int          max_context_len,
                        int          max_gen_step,
                        int          max_output_len,
                        int          batch_size,
                        cudaStream_t stream);

Li Zhang's avatar
Li Zhang committed
80
81
82
83
84
85
86
87
88
89
void invokeUpdateOutput(int**        request_output_ids_ptrs,
                        int**        request_seqlen_ptrs,
                        const int*   output_ids,
                        const int*   sequence_lengths,
                        const int*   request_output_ids_lens,
                        int          max_session_len,
                        bool         token_generated,
                        int          batch_size,
                        cudaStream_t stream);

Li Zhang's avatar
Li Zhang committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
// [aaa, bbbb, cc, ddd] -> [aaabbbbccddd]
void invokeCompactOutputIds(int*         cu_output_ids,
                            const int*   output_ids,
                            const int*   sequence_lengths,
                            int          max_session_len,
                            bool         token_generated,
                            int          batch_size,
                            cudaStream_t stream);

void invokeIndexedCopy(void**       h_src_ptr,
                       void**       h_dst_ptr,
                       const int*   h_elem_sz,
                       const int*   h_src_idx,
                       const int*   h_dst_idx,
                       int          count,
                       int          n_copys,
                       cudaStream_t st);

// ABCDe            ABCDe     e
// ABCDEFGHIJk      ABCDEFGHIJk
// ABCDEFGHi    ->  ABCDEFGHi i
// ABCDEFGh         ABCDEFGh  h
// ABCd             ABCd      d
void invokePadLastTokenIds(
    int* token_ids, const int* context_length, int max_context_len, int batch_size, cudaStream_t stream);

Li Zhang's avatar
Li Zhang committed
116
117
118
void invokeMyCopyInt(int* dst, const int* src, size_t count, cudaStream_t st);

template<typename T>
q.yao's avatar
q.yao committed
119
struct BaseAttentionLayout {
120
121
122
123
124
125
    int    stride_batch;
    int    stride_seq;
    int    stride_head;
    bool   use_seqlens       = false;
    size_t batch_seqs_offset = 0;
    T**    batch_seqs        = nullptr;
q.yao's avatar
q.yao committed
126
127
128
129
130
131
132
133
134
};

template<typename T>
struct BaseAttentionParams {
    T*                     attn_out;
    T*                     query;
    T*                     key;
    T*                     val;
    T*                     mask;
135
136
137
138
139
140
    float*                 out_accum       = nullptr;
    int*                   cu_seqlens_q    = nullptr;
    int*                   cu_seqlens_k    = nullptr;
    int*                   actual_seqlen_q = nullptr;
    int*                   actual_seqlen_k = nullptr;
    size_t                 group_size      = 1;
q.yao's avatar
q.yao committed
141
142
143
144
145
146
147
148
    BaseAttentionLayout<T> layout_q;
    BaseAttentionLayout<T> layout_k;
    BaseAttentionLayout<T> layout_v;
    BaseAttentionLayout<T> layout_o;
};

template<typename T, int version>
class FlashAttentionOpImpl {
Li Zhang's avatar
Li Zhang committed
149
public:
q.yao's avatar
q.yao committed
150
151
    using AttentionLayout = BaseAttentionLayout<T>;
    using Params          = BaseAttentionParams<T>;
Li Zhang's avatar
Li Zhang committed
152
153

public:
q.yao's avatar
q.yao committed
154
155
    FlashAttentionOpImpl(int batch_size, int head_num, int key_len, int seq_len, int size_per_head);
    ~FlashAttentionOpImpl();
Li Zhang's avatar
Li Zhang committed
156
157
158
159
160
161
162
163
164
165

    int get_workspace_size() const;

    void operator()(Params& params, cudaStream_t st) const;

private:
    class impl;
    std::unique_ptr<impl> pimpl;
};

q.yao's avatar
q.yao committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
template<typename T>
class FlashAttentionOp {
public:
    using AttentionLayout = BaseAttentionLayout<T>;
    using Params          = BaseAttentionParams<T>;

public:
    FlashAttentionOp(int batch_size, int head_num, int key_len, int seq_len, int size_per_head);

    int get_workspace_size() const;

    void operator()(Params& params, cudaStream_t st) const;

private:
    int batch_size_;
    int head_num_;
    int key_len_;
    int seq_len_;
    int size_per_head_;
    int op_version_;
};

Li Zhang's avatar
Li Zhang committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
template<typename T>
inline void dump(const T* x, int size, cudaStream_t st, const char* msg, bool full = false)
{
    std::vector<T> h_x(size);
    cudaMemcpyAsync(h_x.data(), x, sizeof(T) * size, cudaMemcpyDefault, st);
    cudaStreamSynchronize(st);
    fprintf(stderr, "\n%s:\n", msg);
    std::vector<float> h_y(h_x.begin(), h_x.end());
    float              asum = 0.f;
    for (const auto& x : h_y) {
        asum += std::fabs(x);
    }
    if (full) {
        for (int i = 0; i < size; ++i) {
            printf("%d %.8f\n", i, h_y[i]);
        }
    }
    else {
        for (int i = 0; i < 8; ++i) {
            fprintf(stderr, "%.8f\n", h_y[i]);
        }
        for (int i = size - 8; i < size; ++i) {
            fprintf(stderr, "%.8f\n", h_y[i]);
        }
    }
    fprintf(stderr, "\nasum = %f\n", asum);
    // getchar();
}

template<typename T>
struct TempBuffer {
    TempBuffer(size_t size)
    {
        deviceMalloc(&data, size, false);
    }
    T* data;
};

inline void dump_sequence_len(int* d_seq_len, int step, int tp_rank, cudaStream_t st)
{
    int h_seq_len = -1;
    cudaMemcpyAsync(&h_seq_len, d_seq_len, sizeof(int), cudaMemcpyDefault, st);
    cudaStreamSynchronize(st);
lvhan028's avatar
lvhan028 committed
231
    TM_LOG_ERROR("--------> rank = %d, step = %d, seq_len = %d <--------", tp_rank, step, h_seq_len);
Li Zhang's avatar
Li Zhang committed
232
233
}

lvhan028's avatar
lvhan028 committed
234
}  // namespace turbomind