cuda_utils.h 17.4 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
 * Copyright (c) 2019-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once

#include "3rdparty/INIReader.h"
Chen Xin's avatar
Chen Xin committed
20
#include "src/turbomind/macro.h"
lvhan028's avatar
lvhan028 committed
21
22
#include "src/turbomind/utils/cuda_bf16_wrapper.h"
#include "src/turbomind/utils/logger.h"
Li Zhang's avatar
Li Zhang committed
23
24
25
26
27
28
29
30
31
32
33
34

#include <cublasLt.h>
#include <cublas_v2.h>
#include <cuda_runtime.h>
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#ifdef SPARSITY_ENABLED
#include <cusparseLt.h>
#endif

lvhan028's avatar
lvhan028 committed
35
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
36
37
38
39
40

#define MAX_CONFIG_NUM 20
#define COL32_ 32
// workspace for cublas gemm : 32MB
#define CUBLAS_WORKSPACE_SIZE 33554432
gaoqiong's avatar
gaoqiong committed
41
42
43
44
45
46
47
48
#define CK_WORKSPACE_SIZE 1056768000
#define N_max 3000
#define M_max 22016
#define XPAD_WORKSPACE_SIZE  132096000 
#define DEQ_WORKSPACE_SIZE 232096000
// workspace for ck gemm : 3000*22016*8*2= 1,056,768,000   
// XPAD_WORKSPACE_SIZE :3000*22016*2 = 132,096,000
// DEQ_WORKSPACE_SIZE :4096*22016*2 = 180,355,072 < 232,096,000
Li Zhang's avatar
Li Zhang committed
49
50
51
52
53
54
55
56
typedef struct __align__(4)
{
    half x, y, z, w;
}
half4;

/* **************************** type definition ***************************** */

AllentDan's avatar
AllentDan committed
57
58
enum CublasDataType
{
Li Zhang's avatar
Li Zhang committed
59
60
61
62
63
64
65
    FLOAT_DATATYPE    = 0,
    HALF_DATATYPE     = 1,
    BFLOAT16_DATATYPE = 2,
    INT8_DATATYPE     = 3,
    FP8_DATATYPE      = 4
};

AllentDan's avatar
AllentDan committed
66
67
enum FtCudaDataType
{
Li Zhang's avatar
Li Zhang committed
68
69
70
71
72
73
74
    FP32 = 0,
    FP16 = 1,
    BF16 = 2,
    INT8 = 3,
    FP8  = 4
};

AllentDan's avatar
AllentDan committed
75
76
enum class OperationType
{
Li Zhang's avatar
Li Zhang committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    FP32,
    FP16,
    BF16,
    INT8,
    FP8
};

/* **************************** debug tools ********************************* */
static const char* _cudaGetErrorEnum(cudaError_t error)
{
    return cudaGetErrorString(error);
}

static const char* _cudaGetErrorEnum(cublasStatus_t error)
{
    switch (error) {
        case CUBLAS_STATUS_SUCCESS:
            return "CUBLAS_STATUS_SUCCESS";

        case CUBLAS_STATUS_NOT_INITIALIZED:
            return "CUBLAS_STATUS_NOT_INITIALIZED";

        case CUBLAS_STATUS_ALLOC_FAILED:
            return "CUBLAS_STATUS_ALLOC_FAILED";

        case CUBLAS_STATUS_INVALID_VALUE:
            return "CUBLAS_STATUS_INVALID_VALUE";

        case CUBLAS_STATUS_ARCH_MISMATCH:
            return "CUBLAS_STATUS_ARCH_MISMATCH";

        case CUBLAS_STATUS_MAPPING_ERROR:
            return "CUBLAS_STATUS_MAPPING_ERROR";

        case CUBLAS_STATUS_EXECUTION_FAILED:
            return "CUBLAS_STATUS_EXECUTION_FAILED";

        case CUBLAS_STATUS_INTERNAL_ERROR:
            return "CUBLAS_STATUS_INTERNAL_ERROR";

        case CUBLAS_STATUS_NOT_SUPPORTED:
            return "CUBLAS_STATUS_NOT_SUPPORTED";

        case CUBLAS_STATUS_LICENSE_ERROR:
            return "CUBLAS_STATUS_LICENSE_ERROR";
    }
    return "<unknown>";
}

template<typename T>
void check(T result, char const* const func, const char* const file, int const line)
{
    if (result) {
q.yao's avatar
q.yao committed
130
        throw std::runtime_error(std::string("[TM][ERROR] CUDA runtime error: ") + (_cudaGetErrorEnum(result)) + " "
Li Zhang's avatar
Li Zhang committed
131
132
133
134
135
136
137
138
139
140
                                 + file + ":" + std::to_string(line) + " \n");
    }
}

#define check_cuda_error(val) check((val), #val, __FILE__, __LINE__)
#define check_cuda_error_2(val, file, line) check((val), #val, file, line)

inline void syncAndCheck(const char* const file, int const line)
{
    // When FT_DEBUG_LEVEL=DEBUG, must check error
Li Zhang's avatar
Li Zhang committed
141
    static char* level_name = std::getenv("TM_DEBUG_LEVEL");
Li Zhang's avatar
Li Zhang committed
142
143
144
145
146
147
    if (level_name != nullptr) {
        static std::string level = std::string(level_name);
        if (level == "DEBUG") {
            cudaDeviceSynchronize();
            cudaError_t result = cudaGetLastError();
            if (result) {
q.yao's avatar
q.yao committed
148
                throw std::runtime_error(std::string("[TM][ERROR] CUDA runtime error: ") + (_cudaGetErrorEnum(result))
Li Zhang's avatar
Li Zhang committed
149
150
                                         + " " + file + ":" + std::to_string(line) + " \n");
            }
lvhan028's avatar
lvhan028 committed
151
            TM_LOG_DEBUG(fmtstr("run syncAndCheck at %s:%d", file, line));
Li Zhang's avatar
Li Zhang committed
152
153
154
155
156
157
158
        }
    }

#ifndef NDEBUG
    cudaDeviceSynchronize();
    cudaError_t result = cudaGetLastError();
    if (result) {
q.yao's avatar
q.yao committed
159
        throw std::runtime_error(std::string("[TM][ERROR] CUDA runtime error: ") + (_cudaGetErrorEnum(result)) + " "
Li Zhang's avatar
Li Zhang committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
                                 + file + ":" + std::to_string(line) + " \n");
    }
#endif
}

#define sync_check_cuda_error() syncAndCheck(__FILE__, __LINE__)

#define checkCUDNN(expression)                                                                                         \
    {                                                                                                                  \
        cudnnStatus_t status = (expression);                                                                           \
        if (status != CUDNN_STATUS_SUCCESS) {                                                                          \
            std::cerr << "Error on file " << __FILE__ << " line " << __LINE__ << ": " << cudnnGetErrorString(status)   \
                      << std::endl;                                                                                    \
            std::exit(EXIT_FAILURE);                                                                                   \
        }                                                                                                              \
    }

template<typename T>
void print_to_file(const T*           result,
                   const int          size,
                   const char*        file,
                   cudaStream_t       stream    = 0,
                   std::ios::openmode open_mode = std::ios::out);

template<typename T>
void print_abs_mean(const T* buf, uint size, cudaStream_t stream, std::string name = "");

template<typename T>
void print_to_screen(const T* result, const int size);

template<typename T>
void printMatrix(T* ptr, int m, int k, int stride, bool is_device_ptr);

void printMatrix(unsigned long long* ptr, int m, int k, int stride, bool is_device_ptr);
void printMatrix(int* ptr, int m, int k, int stride, bool is_device_ptr);
void printMatrix(size_t* ptr, int m, int k, int stride, bool is_device_ptr);

template<typename T>
void check_max_val(const T* result, const int size);

template<typename T>
void check_abs_mean_val(const T* result, const int size);

#define PRINT_FUNC_NAME_()                                                                                             \
    do {                                                                                                               \
q.yao's avatar
q.yao committed
205
        std::cout << "[TM][CALL] " << __FUNCTION__ << " " << std::endl;                                                \
Li Zhang's avatar
Li Zhang committed
206
207
208
209
    } while (0)

[[noreturn]] inline void throwRuntimeError(const char* const file, int const line, std::string const& info = "")
{
q.yao's avatar
q.yao committed
210
    throw std::runtime_error(std::string("[TM][ERROR] ") + info + " Assertion fail: " + file + ":"
Li Zhang's avatar
Li Zhang committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
                             + std::to_string(line) + " \n");
}

inline void myAssert(bool result, const char* const file, int const line, std::string const& info = "")
{
    if (!result) {
        throwRuntimeError(file, line, info);
    }
}

#define FT_CHECK(val) myAssert(val, __FILE__, __LINE__)
#define FT_CHECK_WITH_INFO(val, info)                                                                                  \
    do {                                                                                                               \
        bool is_valid_val = (val);                                                                                     \
        if (!is_valid_val) {                                                                                           \
AllentDan's avatar
AllentDan committed
226
            turbomind::myAssert(is_valid_val, __FILE__, __LINE__, (info));                                             \
Li Zhang's avatar
Li Zhang committed
227
228
229
230
231
232
233
234
235
236
        }                                                                                                              \
    } while (0)

#define FT_THROW(info) throwRuntimeError(__FILE__, __LINE__, info)

#ifdef SPARSITY_ENABLED
#define CHECK_CUSPARSE(func)                                                                                           \
    {                                                                                                                  \
        cusparseStatus_t status = (func);                                                                              \
        if (status != CUSPARSE_STATUS_SUCCESS) {                                                                       \
q.yao's avatar
q.yao committed
237
            throw std::runtime_error(std::string("[TM][ERROR] CUSPARSE API failed at line ")                           \
Li Zhang's avatar
Li Zhang committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
                                     + std::to_string(__LINE__) + " in file " + __FILE__ + ": "                        \
                                     + cusparseGetErrorString(status) + " " + std::to_string(status));                 \
        }                                                                                                              \
    }
#endif

/*************Time Handling**************/
class CudaTimer {
private:
    cudaEvent_t  event_start_;
    cudaEvent_t  event_stop_;
    cudaStream_t stream_;

public:
    explicit CudaTimer(cudaStream_t stream = 0)
    {
        stream_ = stream;
    }
    void start()
    {
        check_cuda_error(cudaEventCreate(&event_start_));
        check_cuda_error(cudaEventCreate(&event_stop_));
        check_cuda_error(cudaEventRecord(event_start_, stream_));
    }
    float stop()
    {
        float time;
        check_cuda_error(cudaEventRecord(event_stop_, stream_));
        check_cuda_error(cudaEventSynchronize(event_stop_));
        check_cuda_error(cudaEventElapsedTime(&time, event_start_, event_stop_));
        check_cuda_error(cudaEventDestroy(event_start_));
        check_cuda_error(cudaEventDestroy(event_stop_));
        return time;
    }
    ~CudaTimer() {}
};

/* ***************************** common utils ****************************** */

inline void print_mem_usage(std::string time = "after allocation")
{
    size_t free_bytes, total_bytes;
    check_cuda_error(cudaMemGetInfo(&free_bytes, &total_bytes));
    float free  = static_cast<float>(free_bytes) / 1024.0 / 1024.0 / 1024.0;
    float total = static_cast<float>(total_bytes) / 1024.0 / 1024.0 / 1024.0;
    float used  = total - free;
    printf("%-20s: free: %5.2f GB, total: %5.2f GB, used: %5.2f GB\n", time.c_str(), free, total, used);
}

inline int getSMVersion()
{
    int device{-1};
    check_cuda_error(cudaGetDevice(&device));
    int sm_major = 0;
    int sm_minor = 0;
    check_cuda_error(cudaDeviceGetAttribute(&sm_major, cudaDevAttrComputeCapabilityMajor, device));
    check_cuda_error(cudaDeviceGetAttribute(&sm_minor, cudaDevAttrComputeCapabilityMinor, device));
    return sm_major * 10 + sm_minor;
}

inline int getMaxSharedMemoryPerBlock()
{
    int device{-1};
    check_cuda_error(cudaGetDevice(&device));
    int max_shared_memory_size = 0;
    check_cuda_error(cudaDeviceGetAttribute(&max_shared_memory_size, cudaDevAttrMaxSharedMemoryPerBlock, device));
    return max_shared_memory_size;
}

inline std::string getDeviceName()
{
    int device{-1};
    check_cuda_error(cudaGetDevice(&device));
    cudaDeviceProp props;
    check_cuda_error(cudaGetDeviceProperties(&props, device));
    return std::string(props.name);
}

inline int div_up(int a, int n)
{
    return (a + n - 1) / n;
}

cudaError_t getSetDevice(int i_device, int* o_device = NULL);

inline int getDevice()
{
    int current_dev_id = 0;
    check_cuda_error(cudaGetDevice(&current_dev_id));
    return current_dev_id;
}

inline int getDeviceCount()
{
    int count = 0;
    check_cuda_error(cudaGetDeviceCount(&count));
    return count;
}

template<typename T>
CublasDataType getCublasDataType()
{
    if (std::is_same<T, half>::value) {
        return HALF_DATATYPE;
    }
#ifdef ENABLE_BF16
    else if (std::is_same<T, __nv_bfloat16>::value) {
        return BFLOAT16_DATATYPE;
    }
#endif
    else if (std::is_same<T, float>::value) {
        return FLOAT_DATATYPE;
    }
    else {
        FT_CHECK(false);
        return FLOAT_DATATYPE;
    }
}

template<typename T>
cudaDataType_t getCudaDataType()
{
    if (std::is_same<T, half>::value) {
        return CUDA_R_16F;
    }
#ifdef ENABLE_BF16
    else if (std::is_same<T, __nv_bfloat16>::value) {
        return CUDA_R_16BF;
    }
#endif
    else if (std::is_same<T, float>::value) {
        return CUDA_R_32F;
    }
    else {
        FT_CHECK(false);
        return CUDA_R_32F;
    }
}

template<CublasDataType T>
struct getTypeFromCudaDataType {
    using Type = float;
};

template<>
struct getTypeFromCudaDataType<HALF_DATATYPE> {
    using Type = half;
};

#ifdef ENABLE_BF16
template<>
struct getTypeFromCudaDataType<BFLOAT16_DATATYPE> {
    using Type = __nv_bfloat16;
};
#endif

FtCudaDataType getModelFileType(std::string ini_file, std::string section_name);

// clang-format off
template<typename T> struct packed_type;
template <>          struct packed_type<float>         { using type = float; }; // we don't need to pack float by default
template <>          struct packed_type<half>          { using type = half2; };

#ifdef ENABLE_BF16
template<>
struct packed_type<__nv_bfloat16> {
    using type = __nv_bfloat162;
};
#endif

template<typename T> struct num_elems;
template <>          struct num_elems<float>           { static constexpr int value = 1; };
template <>          struct num_elems<float2>          { static constexpr int value = 2; };
template <>          struct num_elems<float4>          { static constexpr int value = 4; };
template <>          struct num_elems<half>            { static constexpr int value = 1; };
template <>          struct num_elems<half2>           { static constexpr int value = 2; };
#ifdef ENABLE_BF16
template <>          struct num_elems<__nv_bfloat16>   { static constexpr int value = 1; };
template <>          struct num_elems<__nv_bfloat162>  { static constexpr int value = 2; };
#endif

template<typename T, int num> struct packed_as;
template<typename T>          struct packed_as<T, 1>              { using type = T; };
template<>                    struct packed_as<half,  2>          { using type = half2; };
template<>                    struct packed_as<float,  2>         { using type = float2; };
template<>                    struct packed_as<int8_t, 2>         { using type = int16_t; };
template<>                    struct packed_as<int32_t, 2>        { using type = int2; };
template<>                    struct packed_as<half2, 1>          { using type = half; };
#ifdef ENABLE_BF16
template<> struct packed_as<__nv_bfloat16,  2> { using type = __nv_bfloat162; };
template<> struct packed_as<__nv_bfloat162, 1> { using type = __nv_bfloat16;  };
#endif

inline __device__ float2 operator*(float2 a, float2 b) { return make_float2(a.x * b.x, a.y * b.y); }
inline __device__ float2 operator*(float2 a, float  b) { return make_float2(a.x * b, a.y * b); }
// clang-format on

template<typename T1, typename T2>
void compareTwoTensor(
    const T1* pred, const T2* ref, const int size, const int print_size = 0, const std::string filename = "")
{
    T1* h_pred = new T1[size];
    T2* h_ref  = new T2[size];
    check_cuda_error(cudaMemcpy(h_pred, pred, size * sizeof(T1), cudaMemcpyDeviceToHost));
    check_cuda_error(cudaMemcpy(h_ref, ref, size * sizeof(T2), cudaMemcpyDeviceToHost));

    FILE* fd = nullptr;
    if (filename != "") {
        fd = fopen(filename.c_str(), "w");
        fprintf(fd, "| %10s | %10s | %10s | %10s | \n", "pred", "ref", "abs_diff", "rel_diff(%)");
    }

    if (print_size > 0) {
lvhan028's avatar
lvhan028 committed
451
        TM_LOG_INFO("  id |   pred  |   ref   |abs diff | rel diff (%) |");
Li Zhang's avatar
Li Zhang committed
452
453
454
455
456
457
    }
    float mean_abs_diff = 0.0f;
    float mean_rel_diff = 0.0f;
    int   count         = 0;
    for (int i = 0; i < size; i++) {
        if (i < print_size) {
lvhan028's avatar
lvhan028 committed
458
            TM_LOG_INFO("%4d | % 6.4f | % 6.4f | % 6.4f | % 7.4f |",
Li Zhang's avatar
Li Zhang committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
                        i,
                        (float)h_pred[i],
                        (float)h_ref[i],
                        abs((float)h_pred[i] - (float)h_ref[i]),
                        abs((float)h_pred[i] - (float)h_ref[i]) / (abs((float)h_ref[i]) + 1e-6f) * 100.f);
        }
        if ((float)h_pred[i] == 0) {
            continue;
        }
        count += 1;
        mean_abs_diff += abs((float)h_pred[i] - (float)h_ref[i]);
        mean_rel_diff += abs((float)h_pred[i] - (float)h_ref[i]) / (abs((float)h_ref[i]) + 1e-6f) * 100.f;

        if (fd != nullptr) {
            fprintf(fd,
                    "| %10.5f | %10.5f | %10.5f | %11.5f |\n",
                    (float)h_pred[i],
                    (float)h_ref[i],
                    abs((float)h_pred[i] - (float)h_ref[i]),
                    abs((float)h_pred[i] - (float)h_ref[i]) / (abs((float)h_ref[i]) + 1e-6f) * 100.f);
        }
    }
    mean_abs_diff = mean_abs_diff / (float)count;
    mean_rel_diff = mean_rel_diff / (float)count;
lvhan028's avatar
lvhan028 committed
483
    TM_LOG_INFO("mean_abs_diff: % 6.4f, mean_rel_diff: % 6.4f (%%)", mean_abs_diff, mean_rel_diff);
Li Zhang's avatar
Li Zhang committed
484
485
486
487
488
489
490
491
492
493

    if (fd != nullptr) {
        fprintf(fd, "mean_abs_diff: % 6.4f, mean_rel_diff: % 6.4f (%%)", mean_abs_diff, mean_rel_diff);
        fclose(fd);
    }
    delete[] h_pred;
    delete[] h_ref;
}

/* ************************** end of common utils ************************** */
lvhan028's avatar
lvhan028 committed
494
}  // namespace turbomind