LlamaDecoderLayerWeight.cc 18.3 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2019-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

Li Zhang's avatar
Li Zhang committed
18
// Modified from
lvhan028's avatar
lvhan028 committed
19
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/turbomind/models/multi_gpu_gpt/ParallelGptDecoderLayerWeight.cc
Li Zhang's avatar
Li Zhang committed
20

lvhan028's avatar
lvhan028 committed
21
#include "src/turbomind/models/llama/LlamaDecoderLayerWeight.h"
22
#include "src/turbomind/models/llama/LlamaDenseWeight.h"
lvhan028's avatar
lvhan028 committed
23
24
#include "src/turbomind/utils/logger.h"
#include "src/turbomind/utils/memory_utils.h"
xiabo's avatar
xiabo committed
25
26
27
28
// #include <filesystem>
#include <experimental/filesystem>
#include <sys/stat.h>
#include <string>
Li Zhang's avatar
Li Zhang committed
29

lvhan028's avatar
lvhan028 committed
30
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
31

xiabo's avatar
xiabo committed
32
33
34
35
36
bool fileExists(const std::string& path) {
    struct stat buffer;
    return (stat(path.c_str(), &buffer) == 0);
}

Li Zhang's avatar
Li Zhang committed
37
template<typename T>
38
39
40
LlamaDecoderLayerWeight<T>::LlamaDecoderLayerWeight(size_t     head_num,
                                                    size_t     kv_head_num,
                                                    size_t     size_per_head,
Li Zhang's avatar
Li Zhang committed
41
42
                                                    size_t     inter_size,
                                                    WeightType weight_type,
43
                                                    int        group_size,
gaoqiong's avatar
gaoqiong committed
44
                                                    int        w4_weight_layout,
Li Zhang's avatar
Li Zhang committed
45
46
47
                                                    bool       attn_bias,
                                                    size_t     tensor_para_size,
                                                    size_t     tensor_para_rank):
48
49
50
51
    head_num_(head_num),
    kv_head_num_(kv_head_num),
    size_per_head_(size_per_head),
    hidden_units_(head_num * size_per_head),
Li Zhang's avatar
Li Zhang committed
52
53
    inter_size_(inter_size),
    weight_type_(weight_type),
Li Zhang's avatar
Li Zhang committed
54
    attn_bias_(attn_bias),
Li Zhang's avatar
Li Zhang committed
55
56
57
    tensor_para_size_(tensor_para_size),
    tensor_para_rank_(tensor_para_rank)
{
Li Zhang's avatar
Li Zhang committed
58
    self_attn_weights.qkv.input_dims  = hidden_units_;
59
    self_attn_weights.qkv.output_dims = (head_num + 2 * kv_head_num) * size_per_head / tensor_para_size_;
Li Zhang's avatar
Li Zhang committed
60
    self_attn_weights.qkv.type        = weight_type;
61
    self_attn_weights.qkv.group_size  = group_size;
gaoqiong's avatar
gaoqiong committed
62
    self_attn_weights.qkv.w4_weight_layout  = w4_weight_layout;
Li Zhang's avatar
Li Zhang committed
63
64
65
66

    self_attn_weights.output.input_dims  = hidden_units_ / tensor_para_size_;
    self_attn_weights.output.output_dims = hidden_units_;
    self_attn_weights.output.type        = weight_type;
67
    self_attn_weights.output.group_size  = group_size;
gaoqiong's avatar
gaoqiong committed
68
    self_attn_weights.output.w4_weight_layout  = w4_weight_layout;
Li Zhang's avatar
Li Zhang committed
69

Li Zhang's avatar
Li Zhang committed
70
71
72
    ffn_weights.gating.input_dims  = hidden_units_;
    ffn_weights.gating.output_dims = inter_size_ / tensor_para_size_;
    ffn_weights.gating.type        = weight_type;
73
    ffn_weights.gating.group_size  = group_size;
gaoqiong's avatar
gaoqiong committed
74
    ffn_weights.gating.w4_weight_layout  = w4_weight_layout;
Li Zhang's avatar
Li Zhang committed
75
76
77
78

    ffn_weights.intermediate.input_dims  = hidden_units_;
    ffn_weights.intermediate.output_dims = inter_size_ / tensor_para_size_;
    ffn_weights.intermediate.type        = weight_type;
79
    ffn_weights.intermediate.group_size  = group_size;
gaoqiong's avatar
gaoqiong committed
80
    ffn_weights.intermediate.w4_weight_layout  = w4_weight_layout;
81
82
83
84
85

    ffn_weights.fused_gating_intermediate.input_dims  = hidden_units_;
    ffn_weights.fused_gating_intermediate.output_dims = inter_size_ / tensor_para_size_ * 2;
    ffn_weights.fused_gating_intermediate.type        = weight_type;
    ffn_weights.fused_gating_intermediate.group_size  = group_size;
gaoqiong's avatar
gaoqiong committed
86
    ffn_weights.fused_gating_intermediate.w4_weight_layout  = w4_weight_layout;
Li Zhang's avatar
Li Zhang committed
87
88
89
90

    ffn_weights.output.input_dims  = inter_size_ / tensor_para_size_;
    ffn_weights.output.output_dims = hidden_units_;
    ffn_weights.output.type        = weight_type;
91
    ffn_weights.output.group_size  = group_size;
gaoqiong's avatar
gaoqiong committed
92
    ffn_weights.output.w4_weight_layout  = w4_weight_layout;
Li Zhang's avatar
Li Zhang committed
93
94
95
96
97
98
99
100
    mallocWeights();
}

template<typename T>
void freeWeights(LlamaDenseWeight<T>& weights)
{
    cudaFree(weights.kernel);
    cudaFree(weights.bias);
101
    cudaFree(weights.scales_and_zeros);
Li Zhang's avatar
Li Zhang committed
102

103
104
105
    weights.kernel           = nullptr;
    weights.bias             = nullptr;
    weights.scales_and_zeros = nullptr;
Li Zhang's avatar
Li Zhang committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
}

template<typename T>
void mallocWeights(LlamaDenseWeight<T>& weights, bool bias)
{
    if (bias) {
        deviceMalloc((T**)&weights.bias, weights.output_dims);
    }
    const size_t bit_size = getBitSize(weights.type);
    if (bit_size >= 16) {  // fp16, fp32
        deviceMalloc((T**)&weights.kernel, weights.input_dims * weights.output_dims);
    }
    else {  // int8, int4
        const int factor = sizeof(float) * 8 / bit_size;
        FT_CHECK(weights.input_dims % factor == 0);
gaoqiong's avatar
gaoqiong committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    //    //读环境变量
    //     int m_weightlayout_switch=1;
    //     const char* env_weightlayout_str = std::getenv("LMDEPLOY_WEIGHTLAYOUT_SWITCH");
    //     if (env_weightlayout_str != nullptr) {
    //         m_weightlayout_switch = std::stoi(env_weightlayout_str);
    //     }
        
        if((weights.input_dims%4096==0)&&(weights.w4_weight_layout==1||weights.w4_weight_layout==2))
        {
            size_t new_input_dims=weights.input_dims+2*weights.group_size;

            deviceMalloc((int**)&weights.kernel, new_input_dims * weights.output_dims / factor);
            deviceMemSetZero((int*)weights.kernel, new_input_dims* weights.output_dims / factor);
            // interleaved scales/zeros
            deviceMalloc((T**)&weights.scales_and_zeros, new_input_dims / weights.group_size * weights.output_dims * 2);
        }
        else{
            deviceMalloc((int**)&weights.kernel, weights.input_dims * weights.output_dims / factor);
            deviceMemSetZero((int*)weights.kernel, weights.input_dims * weights.output_dims / factor);
            // interleaved scales/zeros
            deviceMalloc((T**)&weights.scales_and_zeros, weights.input_dims / weights.group_size * weights.output_dims * 2);
        }
Li Zhang's avatar
Li Zhang committed
143
144
145
    }
}

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
template<typename FirstArg, typename... Args>
std::string concat(FirstArg&& first, Args&&... args)
{
    std::stringstream stream;
    stream << first;
    ((stream << "." << args), ...);
    return stream.str();
}

template<typename T>
void getWeightTensor(LlamaDenseWeight<T>& weights, bool bias, const std::string& prefix, TensorMap& output)
{
    auto get_name = [=](const std::string& name) { return concat(prefix, name); };

    if (bias) {
        output.insert(get_name("bias"),
                      Tensor{MEMORY_GPU, getTensorType<T>(), {weights.output_dims * sizeof(T)}, weights.bias});
    }
    const size_t bit_size = getBitSize(weights.type);
    if (bit_size >= 16) {
        output.insert(get_name("weight"),
                      Tensor{MEMORY_GPU,
                             getTensorType<T>(),
                             {weights.input_dims * weights.output_dims * sizeof(T)},
                             weights.kernel});
    }
    else {  // int8, int4
        const int factor = sizeof(float) * 8 / bit_size;
gaoqiong's avatar
gaoqiong committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        // //读环境变量
        // int m_weightlayout_switch=1;
        // const char* env_weightlayout_str = std::getenv("LMDEPLOY_WEIGHTLAYOUT_SWITCH");
        // if (env_weightlayout_str != nullptr) {
        //     m_weightlayout_switch = std::stoi(env_weightlayout_str);
        // }
        if((weights.input_dims%4096==0)&&(weights.w4_weight_layout==1||weights.w4_weight_layout==2))
        {
            size_t new_input_dims=weights.input_dims+weights.group_size;

            output.insert(get_name("qweight"),
                        Tensor{MEMORY_GPU,
                                TYPE_INT32,
                                {new_input_dims * weights.output_dims * sizeof(int) / factor},
                                weights.kernel});
            output.insert(get_name("scales_zeros"),
                        Tensor{MEMORY_GPU,
                                getTensorType<T>(),
                                {new_input_dims / weights.group_size * weights.output_dims * 2 * sizeof(T)},
                                weights.scales_and_zeros});
        }
        else{
            output.insert(get_name("qweight"),
                        Tensor{MEMORY_GPU,
                                TYPE_INT32,
                                {weights.input_dims * weights.output_dims * sizeof(int) / factor},
                                weights.kernel});
            output.insert(get_name("scales_zeros"),
                        Tensor{MEMORY_GPU,
                                getTensorType<T>(),
                                {weights.input_dims / weights.group_size * weights.output_dims * 2 * sizeof(T)},
                                weights.scales_and_zeros});
        }
207
208
209
    }
}

Li Zhang's avatar
Li Zhang committed
210
template<typename T>
211
212
213
214
215
216
217
void loadWeights(LlamaDenseWeight<T>& w,
                 std::string          prefix,
                 int                  rank,
                 FtCudaDataType       model_file_type,
                 size_t               tensor_para_size,
                 int                  slice_dim   = 0,
                 std::vector<size_t>  slice_shape = {})
Li Zhang's avatar
Li Zhang committed
218
{
219
220
221
222
223
224
225
226
227
228
    auto       max_prefix = prefix + "." + std::to_string(tensor_para_size - 1);
    const auto type       = model_file_type;

    bool enable_slice = true;
    // Disable slice if tensor param rank is 1
    if (tensor_para_size <= 1) {
        enable_slice = false;
    }
    else {
        // Disable slice if weight has already been sliced
xiabo's avatar
xiabo committed
229
230
        // if (std::filesystem::exists(max_prefix + ".weight") || std::filesystem::exists(max_prefix + ".qweight")) {
        if (fileExists(max_prefix + ".weight") || fileExists(max_prefix + ".qweight")) {
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
            TM_LOG_DEBUG("TP weight exists. Disable runtime TP.");
            enable_slice = false;
        }
    }

    size_t dim0 = w.input_dims;
    size_t dim1 = w.output_dims;
    if (enable_slice) {
        // multiple tp size for slice stride
        if (slice_dim == 0) {
            dim0 = dim0 * tensor_para_size;
            if (slice_shape.size() == 0) {
                slice_shape = {dim0};
            }
        }
        else {
            dim1 = dim1 * tensor_para_size;
            if (slice_shape.size() == 0) {
                slice_shape = {dim1};
            }
        }

        prefix += "." + std::to_string(0);
    }
    else {
        prefix += "." + std::to_string(rank);
    }
Li Zhang's avatar
Li Zhang committed
258
259

    if (w.bias) {
260
261
262
263
        std::vector<ConcateSlice> bias_slices{};
        if (enable_slice) {
            if (slice_dim == 1) {
                size_t       start = 0;
Chen Xin's avatar
Chen Xin committed
264
265
                ConcateSlice slice0{{{0, 1}}};
                ConcateSlice slice1{{{}}};
266
267
268
269
270
271
272
273
274
                for (auto len : slice_shape) {
                    size_t stride = len / tensor_para_size;
                    slice1.slices.push_back({start + stride * rank, start + stride * (rank + 1)});
                    start += len;
                }
                bias_slices = {slice0, slice1};
            }
        }
        loadWeightFromBin((T*)w.bias, {1, dim1}, prefix + ".bias", type, bias_slices);
Li Zhang's avatar
Li Zhang committed
275
276
277
    }
    const size_t bit_size = getBitSize(w.type);
    if (bit_size >= 16) {  // fp16, fp32
278
279
280
281
        std::vector<ConcateSlice> weight_slices{};
        if (enable_slice) {
            if (slice_dim == 1) {
                size_t       start = 0;
Chen Xin's avatar
Chen Xin committed
282
283
                ConcateSlice slice0{{{0, dim0}}};
                ConcateSlice slice1{{{}}};
284
285
286
287
288
289
290
291
292
                for (auto len : slice_shape) {
                    size_t stride = len / tensor_para_size;
                    slice1.slices.push_back({start + stride * rank, start + stride * (rank + 1)});
                    start += len;
                }
                weight_slices = {slice0, slice1};
            }
            else {
                size_t       start = 0;
Chen Xin's avatar
Chen Xin committed
293
294
                ConcateSlice slice0{{}};
                ConcateSlice slice1{{{0, dim1}}};
295
296
297
298
299
300
301
302
303
                for (auto len : slice_shape) {
                    size_t stride = len / tensor_para_size;
                    slice0.slices.push_back({start + stride * rank, start + stride * (rank + 1)});
                    start += len;
                }
                weight_slices = {slice0, slice1};
            }
        }
        loadWeightFromBin((T*)w.kernel, {dim0, dim1}, prefix + ".weight", type, weight_slices);
Li Zhang's avatar
Li Zhang committed
304
305
306
    }
    else {  // int8, int4
        const int factor = sizeof(float) * 8 / bit_size;
307

308
309
        FT_CHECK(dim1 % factor == 0);

gaoqiong's avatar
gaoqiong committed
310
311
312
313
314
315
        // //读环境变量
        // int m_weightlayout_switch=1;
        // const char* env_weightlayout_str = std::getenv("LMDEPLOY_WEIGHTLAYOUT_SWITCH");
        // if (env_weightlayout_str != nullptr) {
        //     m_weightlayout_switch = std::stoi(env_weightlayout_str);
        // }
316

gaoqiong's avatar
gaoqiong committed
317
318
319
320
321
        if((dim0%4096==0)&&(w.w4_weight_layout==1||w.w4_weight_layout==2))
        {
            size_t new_dim0=dim0+2*w.group_size;
            std::vector<size_t> w_shape{new_dim0, dim1 / factor * sizeof(uint32_t)};
            loadWeightFromBin((int8_t*)w.kernel, w_shape, prefix + ".qweight", FtCudaDataType::INT8, {});
322

gaoqiong's avatar
gaoqiong committed
323
324
325
326
327
328
329
330
331
332
333
334
            const size_t group_count = w.group_size > 0 ? new_dim0 / w.group_size : 1;

            loadWeightFromBin((half*)w.scales_and_zeros, {group_count, dim1 * 2}, prefix + ".scales_zeros", type, {});
        }
        else{
            std::vector<size_t> w_shape{dim0, dim1 / factor * sizeof(uint32_t)};
            loadWeightFromBin((int8_t*)w.kernel, w_shape, prefix + ".qweight", FtCudaDataType::INT8, {});

            const size_t group_count = w.group_size > 0 ? dim0 / w.group_size : 1;

            loadWeightFromBin((half*)w.scales_and_zeros, {group_count, dim1 * 2}, prefix + ".scales_zeros", type, {});
        }
Li Zhang's avatar
Li Zhang committed
335
336
337
338
339
340
341
342
343
    }
}

template<typename T>
void LlamaDecoderLayerWeight<T>::mallocWeights()
{
    deviceMalloc((T**)&self_attn_norm_weights, hidden_units_);
    deviceMalloc((T**)&ffn_norm_weights, hidden_units_);

lvhan028's avatar
lvhan028 committed
344
345
    turbomind::mallocWeights(self_attn_weights.qkv, attn_bias_);
    turbomind::mallocWeights(self_attn_weights.output, attn_bias_);
346
    self_attn_weights.past_kv_scale = {1.f, 0.f, 1.f, 0.f};
Li Zhang's avatar
Li Zhang committed
347

348
349
350
351
352
353
354
355
    if (weight_type_ == WeightType::kINT4) {
        turbomind::mallocWeights(ffn_weights.fused_gating_intermediate, false);
    }
    else {
        turbomind::mallocWeights(ffn_weights.gating, false);
        turbomind::mallocWeights(ffn_weights.intermediate, false);
    }

lvhan028's avatar
lvhan028 committed
356
    turbomind::mallocWeights(ffn_weights.output, false);
Li Zhang's avatar
Li Zhang committed
357
358
359
360
361
362
363
364
365
366
}

template<typename T>
LlamaDecoderLayerWeight<T>::~LlamaDecoderLayerWeight()
{
    cudaFree((void*)self_attn_norm_weights);
    cudaFree((void*)ffn_norm_weights);

    freeWeights(self_attn_weights.qkv);
    freeWeights(self_attn_weights.output);
367
368
369
370
371
372
373
374
375

    if (weight_type_ == WeightType::kINT4) {
        freeWeights(ffn_weights.fused_gating_intermediate);
    }
    else {
        freeWeights(ffn_weights.gating);
        freeWeights(ffn_weights.intermediate);
    }

Li Zhang's avatar
Li Zhang committed
376
377
378
379
380
381
382
383
384
385
386
387
388
    freeWeights(ffn_weights.output);
}

template<typename T>
void LlamaDecoderLayerWeight<T>::loadModel(std::string dir_path, FtCudaDataType model_file_type)
{
    const auto rank_spec = std::to_string(tensor_para_rank_);
    const auto type      = model_file_type;

    loadWeightFromBin(
        (T*)self_attn_norm_weights, {hidden_units_}, dir_path + ".attention_norm.weight", model_file_type);
    loadWeightFromBin((T*)ffn_norm_weights, {hidden_units_}, dir_path + ".ffn_norm.weight", model_file_type);

389
390
391
392
393
394
395
    loadWeights(self_attn_weights.qkv,
                dir_path + ".attention.w_qkv",
                tensor_para_rank_,
                type,
                tensor_para_size_,
                1,
                {head_num_ * size_per_head_, kv_head_num_ * size_per_head_, kv_head_num_ * size_per_head_});
396

397
    loadWeights(self_attn_weights.output, dir_path + ".attention.wo", tensor_para_rank_, type, tensor_para_size_, 0);
398
399
400
401
402
403
404
405
406
407
408
409
410
411

    if (weight_type_ == WeightType::kINT4) {
        loadWeights(ffn_weights.fused_gating_intermediate,
                    dir_path + ".feed_forward.w13",
                    tensor_para_rank_,
                    type,
                    tensor_para_size_,
                    1);
    }
    else {
        loadWeights(ffn_weights.gating, dir_path + ".feed_forward.w1", tensor_para_rank_, type, tensor_para_size_, 1);
        loadWeights(
            ffn_weights.intermediate, dir_path + ".feed_forward.w3", tensor_para_rank_, type, tensor_para_size_, 1);
    }
412
    loadWeights(ffn_weights.output, dir_path + ".feed_forward.w2", tensor_para_rank_, type, tensor_para_size_, 0);
413
414

    // load kv_cache quant scale
AllentDan's avatar
AllentDan committed
415
416
    std::string   scale_path = dir_path + ".past_kv_scale." + rank_spec + ".weight";
    std::ifstream in(scale_path, std::ios::in);
417
418
    if (in.is_open()) {
        in.close();
419
        self_attn_weights.past_kv_scale = loadArrayFromBin({4}, scale_path);
AllentDan's avatar
AllentDan committed
420
    }
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
}

template<typename T>
TensorMap LlamaDecoderLayerWeight<T>::getParams(std::string prefix)
{
    TensorMap output;

    output.insert(concat(prefix, "attention_norm.weight"),
                  Tensor{MEMORY_GPU, getTensorType<T>(), {hidden_units_ * sizeof(T)}, self_attn_norm_weights});

    output.insert(concat(prefix, "ffn_norm.weight"),
                  Tensor{MEMORY_GPU, getTensorType<T>(), {hidden_units_ * sizeof(T)}, ffn_norm_weights});

    auto get_prefix = [=](std::string_view name) { return concat(prefix, name, tensor_para_rank_); };

    getWeightTensor(self_attn_weights.qkv, attn_bias_, get_prefix("attention.w_qkv"), output);

    getWeightTensor(self_attn_weights.output, attn_bias_, get_prefix("attention.wo"), output);

    if (weight_type_ == WeightType::kINT4) {
        getWeightTensor(ffn_weights.fused_gating_intermediate, false, get_prefix("feed_forward.w13"), output);
    }
AllentDan's avatar
AllentDan committed
443
    else {
444
445
        getWeightTensor(ffn_weights.gating, false, get_prefix("feed_forward.w1"), output);
        getWeightTensor(ffn_weights.intermediate, false, get_prefix("feed_forward.w3"), output);
446
    }
447
448
449
450
451
    getWeightTensor(ffn_weights.output, false, get_prefix("feed_forward.w2"), output);
    output.insert(concat(prefix, "past_kv_scale", tensor_para_rank_, "weight"),
                  Tensor{MEMORY_CPU, TYPE_FP32, {4 * sizeof(float)}, self_attn_weights.past_kv_scale.data()});

    return output;
Li Zhang's avatar
Li Zhang committed
452
453
454
455
}

template struct LlamaDecoderLayerWeight<float>;
template struct LlamaDecoderLayerWeight<half>;
q.yao's avatar
q.yao committed
456
457
458
#ifdef ENABLE_BF16
template struct LlamaDecoderLayerWeight<__nv_bfloat16>;
#endif
Li Zhang's avatar
Li Zhang committed
459

lvhan028's avatar
lvhan028 committed
460
}  // namespace turbomind