format.cu 9.38 KB
Newer Older
1
2
3
4
// Copyright (c) OpenMMLab. All rights reserved.

#include "common.h"
#include <iostream>
5
#define BLOCKSIZE 256
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

namespace turbomind {

__device__ void atomic_assign_u4(uint32_t* address, uint32_t index, uint32_t value)
{
    uint32_t old = *address;
    uint32_t assumed;
    do {
        assumed      = old;
        uint32_t tmp = (assumed & ~(0xfu << (index * 4u))) | (value << (index * 4u));
        old          = atomicCAS(address, assumed, tmp);
    } while (assumed != old);
}

__device__ uint32_t read_u4(const uint32_t* address, uint32_t index)
{
    return (*address >> (index * 4u)) & 0xfu;
}

template<int... Ds>
__global__ void permute_u4(uint* dst, const uint* src, Array<int, sizeof...(Ds)> dims)
{
    constexpr int N = sizeof...(Ds);

    size_t count = 1;
    PRAGMA_UNROLL
    for (int i = 0; i < N; ++i) {
        count *= dims[i];
    }

    constexpr int order[] = {Ds...};

    for (int i = threadIdx.x + blockDim.x * blockIdx.x; i < count; i += blockDim.x * gridDim.x) {

        int indices[N]{};

        PRAGMA_UNROLL
        for (int j = N - 1, ii = i; j >= 0; --j) {
            indices[j] = ii % dims[j];
            ii /= dims[j];
        }

        auto data = read_u4(src + i / 8, i % 8);

        int index = 0;

        PRAGMA_UNROLL
        for (int j = N - 1, stride = 1; j >= 0; --j) {
            index += indices[order[j]] * stride;
            stride *= dims[order[j]];
        }

        atomic_assign_u4(dst + index / 8, index % 8, data);
    }
}

void reformat_s4_k8_m(uint32_t* dst, const uint32_t* src, int m, int k, cudaStream_t st)
{
    // permutation for [k/8, m] layout
    Array<int, 10> shape{k / 32, 2, 2, m / 32, 2, 2, 8, 2, 2, 2};
    //        |warp|  lane  | 2x2 |  a0-7  |
    permute_u4<0, 3, 6, 8, 9, 1, 4, 7, 2, 5><<<512, 512, 0, st>>>(dst, src, shape);
}

void reformat_s4_k_m8(uint32_t* dst, const uint32_t* src, int m, int k, cudaStream_t st)
{
    // permutation for [k, m/8] layout
    Array<int, 10> shape{k / 32, 2, 2, 4, 2, m / 32, 2, 2, 2, 4};
    //        |warp|  lane  | 2x2 |  a0-7  |
gaoqiong's avatar
gaoqiong committed
75
76
77
78
79
80
81
82
83
84
85
    //permute_u4<0, 5, 9, 8, 3, 1, 6, 4, 2, 7><<<512, 512, 0, st>>>(dst, src, shape);
    permute_u4<0, 1, 2, 3, 4, 5, 6, 7, 8, 9><<<512, 512, 0, st>>>(dst, src, shape);
}

void reformat_s4_k_m8_tarnsw4(uint32_t* dst, const uint32_t* src, int m, int k, cudaStream_t st)
{
    // permutation for [k, m/8] layout
    Array<int, 10> shape{1, k / 8, 2, 2, 2, 1, m / 8, 2, 2, 2};
    // 0123456-->4,6,7,5,0,3,1,2
    //permute_u4<4, 6, 7, 5, 0, 3, 1, 2><<<512, 512, 0, st>>>(dst, src, shape);
    permute_u4<5, 6, 8, 9, 7, 0, 1, 4, 2, 3><<<512, 512, 0, st>>>(dst, src, shape);
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
}

__global__ void dequantize_s4_offset_64(uint4* dst, const uint32_t* src, size_t count)
{
    for (int i = threadIdx.x + blockDim.x * blockIdx.x; i < count; i += blockDim.x * gridDim.x) {
        dst[i] = dequantize_s4_to_fp16x2_v2(src[i]);
    }
}

__global__ void merge_Q(half2* Q, const half* scales, const half* zeros, int count)
{
    for (int i = threadIdx.x + blockDim.x * blockIdx.x; i < count; i += blockDim.x * gridDim.x) {
        if (TURBOMIND_S4_DEQUANT_USE_FMA) {
            // dequant via HFMA2 has numerical statbility issue
            Q[i] = __halves2half2(-zeros[i] * scales[i], scales[i]);
        }
        else {
            Q[i] = __halves2half2(zeros[i], scales[i]);
        }
    }
}

void convert_s4_k_m8(uint32_t*       A_dst,
                     half2*          Q_dst,
                     half*           workspace,
                     const uint32_t* A_src,
                     const half*     scales,
                     const uint32_t* qzeros,
                     int             m,
                     int             k,
                     int             group_size,
                     cudaStream_t    st)
{
    dequantize_s4_offset_64<<<256, 256, 0, st>>>((uint4*)workspace, qzeros, k / group_size * m / 8);

    merge_Q<<<256, 256, 0, st>>>(Q_dst, scales, workspace, k / group_size * m);

    reformat_s4_k_m8(A_dst, A_src, m, k, st);
}

gaoqiong's avatar
gaoqiong committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
void convert_s4_k_m8_(uint32_t*       A_dst,
                     half2*          Q_dst,
                     half*           workspace,
                     const uint32_t* A_src,
                     const half*     scales,
                     const uint32_t* qzeros,
                     int             m,
                     int             k,
                     int             group_size,
                     cudaStream_t    st)
{
    dequantize_s4_offset_64<<<256, 256, 0, st>>>((uint4*)workspace, qzeros, k / group_size * m / 8);
    merge_Q<<<256, 256, 0, st>>>(Q_dst, scales, workspace, k / group_size * m);
    reformat_s4_k_m8_tarnsw4(A_dst, A_src, m, k, st);
}

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
void transpose_qk_s4_k_m8_hf(uint32_t* dst, const uint32_t* src, int m, int k, int size_per_head, cudaStream_t st)
{
    Array<int, 7> shape{k, m / size_per_head, 2, size_per_head / 2 / 8, 2, 2, 2};
    //      dequant   transpose    quant
    // 0123456 -> 0123564 -> 0135642 -> 0135264
    permute_u4<0, 1, 3, 5, 2, 6, 4><<<512, 512, 0, st>>>(dst, src, shape);
}

// [2, k, m/8] -> [k, m/8, 2]
void fuse_w1_w3_s4_k_m8(uint32_t* dst, const uint32_t* src, int m, int k, cudaStream_t st)
{
    Array<int, 6> shape{2, k, m / 8, 2, 2, 2};
    //     dequant   transpose   quant
    // 012345 -> 012453 -> 124530 -> 124053
    permute_u4<1, 2, 4, 0, 5, 3><<<512, 512, 0, st>>>(dst, src, shape);
}

__global__ void dequantize_s4_kernel(uint4* dst, const uint* src, size_t count)
{
    for (int i = threadIdx.x + blockDim.x * blockIdx.x; i < count; i += blockDim.x * gridDim.x) {
        dst[i] = dequantize_s4_to_fp16x2(src[i]);
    }
}

void dequantize_s4(uint4* dst, const uint32_t* src, size_t count, cudaStream_t st)
{
    dequantize_s4_kernel<<<512, 512>>>(dst, src, count);
}
gaoqiong's avatar
gaoqiong committed
170
171
172
173
174
175
176
177
178
179
180
__global__ void dequant_kernel(int num_kernels,half* weight ,const half2* zeros_and_scales,int k,int n,int group_size)
{
    int id = blockIdx.x * blockDim.x + threadIdx.x;
    if(id >= num_kernels) return;
    int j=id%n;
    int i=id/n;
    half x=zeros_and_scales[i/group_size*n+j].data[0];
    half y= zeros_and_scales[i/group_size*n+j].data[1];
    float tmp=(weight[id]-x)*y;
    weight[id]=__float2half(tmp);
}
181

gaoqiong's avatar
gaoqiong committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
__global__ void dequant_kernel_colmajor(int num_kernels,half* weight ,const half2* zeros_and_scales,int k,int n,int group_size)
{
    int id = blockIdx.x * blockDim.x + threadIdx.x;
    if(id >= num_kernels) return;

    int j=id/group_size;
    half x=zeros_and_scales[j].data[0];
    half y= zeros_and_scales[j].data[1];
    float tmp=(weight[id]-x)*y;
    weight[id]=__float2half(tmp);
}

void dequant_w4_gemm(cudaStream_t stream, half* output,const uint32_t* weight,const half2* zeros_and_scales,int k, int n, int group_size)
{
    dequantize_s4_offset_64<<<256, 256, 0, stream>>>((uint4*)output, weight, k  * n / 8);
    int num_kernels=k*n;
    dequant_kernel<<<(num_kernels+BLOCKSIZE-1)/BLOCKSIZE,BLOCKSIZE,0,stream>>>(num_kernels,output,zeros_and_scales,k,n,group_size);
}


void dequant_w4_gemm_colmajor(cudaStream_t stream, half* output,const uint32_t* weight,const half2* zeros_and_scales,int k, int n, int group_size)
{
    dequantize_s4_offset_64<<<256, 256, 0, stream>>>((uint4*)output, weight, k  * n / 8);
    int num_kernels=k*n;
    dequant_kernel_colmajor<<<(num_kernels+BLOCKSIZE-1)/BLOCKSIZE,BLOCKSIZE,0,stream>>>(num_kernels,output,zeros_and_scales,k,n,group_size);
}


__global__ void FusedSiluActivation_kernel(int num_kernels,half* output ,const uint32_t* src,int m,int n)
{
    
    int id = blockIdx.x * blockDim.x + threadIdx.x;
    if(id >= num_kernels) return;

    auto data = ((half2*)src)[id];
    float x= __half2float(data.data[0]);
    float y= __half2float(data.data[1]);

    float silu=x / (1.f + __expf(-x))*y;

    output[id]=__float2half(silu);

}

__global__ void assign_kernel(int num_kernels,half* output ,const half* src,int m,int n)
{
    
    int id = blockIdx.x * blockDim.x + threadIdx.x;
    if(id >= num_kernels) return;
    output[id]=src[id];
}

void addFusedSiluActivation(cudaStream_t stream,half* output, const half* src,int m,int n,int type)
{
    int num_kernels=m*n;
    switch (type) {
        case 0:
            assign_kernel<<<(num_kernels+BLOCKSIZE-1)/BLOCKSIZE,BLOCKSIZE,0,stream>>>(num_kernels,output,src,m,n);
            break;
        case 1:
            FusedSiluActivation_kernel<<<(num_kernels+BLOCKSIZE-1)/BLOCKSIZE,BLOCKSIZE,0,stream>>>(int(num_kernels/2),output,(const uint32_t*)src,m,n);
            break;
        default:
            return;
    }   
}
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

template <typename T>
__global__ void input_padding_kernel(int num_kernels,T* output,const T* input,int m,int k,int group_size,int count)
{
    int id = blockIdx.x * blockDim.x + threadIdx.x;
    if(id >= num_kernels) return;

    int j=id%(k+count*group_size);
    int i=id/(k+count*group_size);

    if(j<k)
    {
        output[i*(k+count*group_size)+j]=input[i*(k)+j];
    }
    else
    {
        output[i*(k+count*group_size)+j]=0.f;
    } 
}


template <typename T>
void input_padding(cudaStream_t stream, T* output,const T* input,int m,int k,int group_size,int pad_groupcount)
{
    //input的size是[m,k],output的size是[m,n+group_size]
    //
    int num_kernels=m*(k+pad_groupcount*group_size);
    input_padding_kernel<<<(num_kernels+BLOCKSIZE-1)/BLOCKSIZE,BLOCKSIZE,0,stream>>>(num_kernels, output,input,m,k,group_size,pad_groupcount);
}


#define INSTANTIATEINPUTPADING(T)  \
template void input_padding(cudaStream_t stream, T* output,const T* input,int m,int k,int group_size,int pad_groupcount);

INSTANTIATEINPUTPADING(__half)

284
}  // namespace turbomind