README_zh-CN.md 5.38 KB
Newer Older
lvhan028's avatar
lvhan028 committed
1
<div align="center">
lvhan028's avatar
lvhan028 committed
2
  <img src="resources/lmdeploy-logo.png" width="450"/>
lvhan028's avatar
lvhan028 committed
3
4
5
6
7

[English](README.md) | 简体中文

</div>

8
<p align="center">
vansin's avatar
vansin committed
9
    👋 join us on <a href="https://twitter.com/intern_lm" target="_blank">Twitter</a>, <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://r.vansin.top/?r=internwx" target="_blank">WeChat</a>
10
</p>
lvhan028's avatar
lvhan028 committed
11

12
13
______________________________________________________________________

q.yao's avatar
q.yao committed
14
## 更新 🎉
15

16
17
- \[2023/07\] TurboMind 支持使用 GQA 的 Llama-2 70B 模型
- \[2023/07\] TurboMind 支持 Llama-2 7B/13B 模型
q.yao's avatar
q.yao committed
18
- \[2023/07\] TurboMind 支持 InternLM 的 Tensor Parallel 推理
19
20
21

______________________________________________________________________

lvhan028's avatar
lvhan028 committed
22
23
## 简介

24
25
LMDeploy 由 [MMDeploy](https://github.com/open-mmlab/mmdeploy)[MMRazor](https://github.com/open-mmlab/mmrazor) 团队联合开发,是涵盖了 LLM 任务的全套轻量化、部署和服务解决方案。
这个强大的工具箱提供以下核心功能:
lvhan028's avatar
lvhan028 committed
26

lvhan028's avatar
lvhan028 committed
27
- **高效推理引擎 TurboMind**:基于 [FasterTransformer](https://github.com/NVIDIA/FasterTransformer),我们实现了高效推理引擎 TurboMind,支持 InternLM、LLaMA、vicuna等模型在 NVIDIA GPU 上的推理。
lvhan028's avatar
lvhan028 committed
28

29
- **交互推理方式**:通过缓存多轮对话过程中 attention 的 k/v,记住对话历史,从而避免重复处理历史会话。
lvhan028's avatar
lvhan028 committed
30

tpoisonooo's avatar
tpoisonooo committed
31
- **多 GPU 部署和量化**:我们提供了全面的模型部署和量化支持,已在不同规模上完成验证。
lvhan028's avatar
lvhan028 committed
32

33
34
- **persistent batch 推理**:进一步优化模型执行效率。

pppppM's avatar
pppppM committed
35
  ![PersistentBatchInference](https://github.com/InternLM/lmdeploy/assets/67539920/e3876167-0671-44fc-ac52-5a0f9382493e)
lvhan028's avatar
lvhan028 committed
36

lvhan028's avatar
lvhan028 committed
37
## 性能
lvhan028's avatar
lvhan028 committed
38

39
**场景一**: 固定的输入、输出token数(1,2048),测试 output token throughput
lvhan028's avatar
lvhan028 committed
40

41
**场景二**: 使用真实数据,测试 request throughput
lvhan028's avatar
lvhan028 committed
42

43
测试配置:LLaMA-7B, NVIDIA A100(80G)
lvhan028's avatar
lvhan028 committed
44

45
46
TurboMind 的 output token throughput 超过 2000 token/s, 整体比 DeepSpeed 提升约 5% - 15%,比 huggingface transformers 提升 2.3 倍
在 request throughput 指标上,TurboMind 的效率比 vLLM 高 30%
lvhan028's avatar
lvhan028 committed
47

48
![benchmark](https://github.com/InternLM/lmdeploy/assets/4560679/7775c518-608e-4e5b-be73-7645a444e774)
lvhan028's avatar
lvhan028 committed
49

lvhan028's avatar
lvhan028 committed
50
## 快速上手
lvhan028's avatar
lvhan028 committed
51

lvhan028's avatar
lvhan028 committed
52
### 安装
lvhan028's avatar
lvhan028 committed
53
54

```shell
55
conda create -n lmdeploy python=3.10 -y
lvhan028's avatar
lvhan028 committed
56
conda activate lmdeploy
lvhan028's avatar
lvhan028 committed
57
pip install lmdeploy
lvhan028's avatar
lvhan028 committed
58
59
```

lvhan028's avatar
lvhan028 committed
60
### 部署 InternLM
lvhan028's avatar
lvhan028 committed
61

lvhan028's avatar
lvhan028 committed
62
#### 获取 InternLM 模型
lvhan028's avatar
lvhan028 committed
63
64

```shell
lvhan028's avatar
lvhan028 committed
65
# 1. 下载 InternLM 模型
lvhan028's avatar
lvhan028 committed
66

pppppM's avatar
pppppM committed
67
68
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
del-zhenwu's avatar
del-zhenwu committed
69
git clone https://huggingface.co/internlm/internlm-chat-7b /path/to/internlm-chat-7b
pppppM's avatar
pppppM committed
70
71
72
73
74

# if you want to clone without large files – just their pointers
# prepend your git clone with the following env var:
GIT_LFS_SKIP_SMUDGE=1

lvhan028's avatar
lvhan028 committed
75
# 2. 转换为 trubomind 要求的格式。默认存放路径为 ./workspace
76
python3 -m lmdeploy.serve.turbomind.deploy internlm-chat-7b /path/to/internlm-chat-7b
lvhan028's avatar
lvhan028 committed
77

lvhan028's avatar
lvhan028 committed
78
```
lvhan028's avatar
lvhan028 committed
79

lvhan028's avatar
lvhan028 committed
80
#### 使用 turbomind 推理
lvhan028's avatar
lvhan028 committed
81
82

```shell
lvhan028's avatar
lvhan028 committed
83
python3 -m lmdeploy.turbomind.chat ./workspace
lvhan028's avatar
lvhan028 committed
84
85
```

lvhan028's avatar
lvhan028 committed
86
```{note}
tpoisonooo's avatar
tpoisonooo committed
87
88
turbomind 在使用 FP16 精度推理 InternLM-7B 模型时,显存开销至少需要 15.7G。建议使用 3090, V100,A100等型号的显卡。
关闭显卡的 ECC 可以腾出 10% 显存,执行 `sudo nvidia-smi --ecc-config=0` 重启系统生效。
lvhan028's avatar
lvhan028 committed
89
```
lvhan028's avatar
lvhan028 committed
90

lvhan028's avatar
lvhan028 committed
91
92
93
#### 部署推理服务

使用下面的命令启动推理服务:
lvhan028's avatar
lvhan028 committed
94
95

```shell
lvhan028's avatar
lvhan028 committed
96
bash workspace/service_docker_up.sh
lvhan028's avatar
lvhan028 committed
97
98
```

lvhan028's avatar
lvhan028 committed
99
你可以通过命令行方式与推理服务进行对话:
lvhan028's avatar
lvhan028 committed
100
101

```shell
102
python3 -m lmdeploy.serve.client {server_ip_addresss}:33337
lvhan028's avatar
lvhan028 committed
103
104
```

lvhan028's avatar
lvhan028 committed
105
也可以通过 WebUI 方式来对话:
AllentDan's avatar
AllentDan committed
106

vansin's avatar
vansin committed
107
```shell
108
python3 -m lmdeploy.app {server_ip_addresss}:33337
AllentDan's avatar
AllentDan committed
109
```
lvhan028's avatar
lvhan028 committed
110

pppppM's avatar
pppppM committed
111
![](https://github.com/InternLM/lmdeploy/assets/67539920/08d1e6f2-3767-44d5-8654-c85767cec2ab)
AllentDan's avatar
AllentDan committed
112

113
其他模型的部署方式,比如 LLaMA,LLaMA-2,vicuna等等,请参考[这里](docs/zh_cn/serving.md)
lvhan028's avatar
lvhan028 committed
114

WRH's avatar
WRH committed
115
116
### 基于 PyTorch 的推理

117
118
119
120
121
122
你必须确保环境中有安装 deepspeed:

```
pip install deepspeed
```

WRH's avatar
WRH committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#### 单个 GPU

```shell
python3 -m lmdeploy.pytorch.chat $NAME_OR_PATH_TO_HF_MODEL\
    --max_new_tokens 64 \
    --temperture 0.8 \
    --top_p 0.95 \
    --seed 0
```

#### 使用 DeepSpeed 实现张量并行

```shell
deepspeed --module --num_gpus 2 lmdeploy.pytorch.chat \
    $NAME_OR_PATH_TO_HF_MODEL \
    --max_new_tokens 64 \
    --temperture 0.8 \
    --top_p 0.95 \
    --seed 0
```

144
## 量化部署
lvhan028's avatar
lvhan028 committed
145

146
在 fp16 模式下,可以开启 kv_cache int8 量化,单卡可服务更多用户。
tpoisonooo's avatar
tpoisonooo committed
147
首先执行量化脚本,量化参数存放到 `deploy.py` 转换的 `workspace/triton_models/weights` 目录下。
148
149
150
151
152
153
154
155
156
157

```
python3 -m lmdeploy.lite.apis.kv_qparams \
  --model $HF_MODEL \
  --output_dir $DEPLOY_WEIGHT_DIR \
  --symmetry True \ # 对称量化或非对称量化,默认为 True
  --offload  False \ # 将模型放在 CPU,只在推理时加载部分模块到 GPU,默认为 False
  --num_tp 1  \  # Tensor 并行使用的 GPU 数,和 deploy.py 保持一致
```

tpoisonooo's avatar
tpoisonooo committed
158
然后调整 `workspace/triton_models/weights/config.ini`
lvhan028's avatar
lvhan028 committed
159
160
161

- `use_context_fmha` 改为 0,表示关闭
- `quant_policy` 设置为 4。此参数默认为 0,表示不开启
162

163
164
这里是[量化测试结果](./docs/zh_cn/quantization.md)

lvhan028's avatar
lvhan028 committed
165
166
## 贡献指南

lvhan028's avatar
lvhan028 committed
167
我们感谢所有的贡献者为改进和提升 LMDeploy 所作出的努力。请参考[贡献指南](.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。
lvhan028's avatar
lvhan028 committed
168
169
170
171
172
173
174
175

## 致谢

- [FasterTransformer](https://github.com/NVIDIA/FasterTransformer)

## License

该项目采用 [Apache 2.0 开源许可证](LICENSE)