nccl_utils.cc 12.3 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/*
 * Copyright (c) 2021-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

lvhan028's avatar
lvhan028 committed
17
#include "src/turbomind/utils/nccl_utils.h"
Li Zhang's avatar
Li Zhang committed
18
19
#include <atomic>

lvhan028's avatar
lvhan028 committed
20
namespace turbomind {
Li Zhang's avatar
Li Zhang committed
21
22
23
24
25

#ifdef BUILD_MULTI_GPU
template<typename T>
ncclDataType_t getNcclDataType()
{
lvhan028's avatar
lvhan028 committed
26
    TM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    ncclDataType_t nccl_data_type;
    if (std::is_same<T, float>::value) {
        nccl_data_type = ncclFloat;
    }
    else if (std::is_same<T, half>::value) {
        nccl_data_type = ncclHalf;
    }
#if defined(ENABLE_BF16) && defined(ENABLE_BF16_NCCL)
    else if (std::is_same<T, __nv_bfloat16>::value) {
        nccl_data_type = ncclBfloat16;
    }
#endif
    else if (std::is_same<T, int>::value) {
        nccl_data_type = ncclInt;
    }
    else if (std::is_same<T, char>::value) {
        nccl_data_type = ncclChar;
    }
    else if (std::is_same<T, bool>::value) {
        nccl_data_type = ncclInt8;
    }
    else {
        printf("[ERROR] NCCL only support float, half, bfloat16, int, char, and bool. \n");
        exit(-1);
    }
    return nccl_data_type;
}
#endif

template<typename T>
void ftNcclAllReduceSum(const T* send_buf, T* recv_buf, const int data_size, NcclParam nccl_param, cudaStream_t stream)
{
lvhan028's avatar
lvhan028 committed
59
    TM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
60
61
62
63
64
65
66
#ifdef BUILD_MULTI_GPU
    ncclDataType_t nccl_data_type = getNcclDataType<T>();
    NCCLCHECK(ncclGroupStart());
    NCCLCHECK(ncclAllReduce(
        (const void*)send_buf, (void*)recv_buf, data_size, nccl_data_type, ncclSum, nccl_param.nccl_comm_, stream));
    NCCLCHECK(ncclGroupEnd());
#endif
lvhan028's avatar
lvhan028 committed
67
    TM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
68
69
70
71
72
73
}

template<typename T>
void ftNcclAllGather(
    const T* send_buf, T* recv_buf, const int data_size, const int rank, NcclParam nccl_param, cudaStream_t stream)
{
lvhan028's avatar
lvhan028 committed
74
    TM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
75
76
77
78
79
80
81
#ifdef BUILD_MULTI_GPU
    ncclDataType_t nccl_data_type = getNcclDataType<T>();
    NCCLCHECK(ncclGroupStart());
    NCCLCHECK(
        ncclAllGather(send_buf + rank * data_size, recv_buf, data_size, nccl_data_type, nccl_param.nccl_comm_, stream));
    NCCLCHECK(ncclGroupEnd());
#endif
lvhan028's avatar
lvhan028 committed
82
    TM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
83
84
85
86
87
}

template<typename T>
void ftNcclSend(const T* send_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream)
{
lvhan028's avatar
lvhan028 committed
88
    TM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
89
90
91
92
#ifdef BUILD_MULTI_GPU
    ncclDataType_t nccl_data_type = getNcclDataType<T>();
    NCCLCHECK(ncclSend(send_buf, data_size, nccl_data_type, peer, nccl_param.nccl_comm_, stream));
#endif
lvhan028's avatar
lvhan028 committed
93
    TM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
}

template void
ftNcclSend(const float* send_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclSend(const half* send_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
#ifdef ENABLE_BF16
template void ftNcclSend(
    const __nv_bfloat16* send_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
#endif
template void
ftNcclSend(const int* send_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclSend(const bool* send_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclSend(const char* send_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);

template<typename T>
void ftNcclRecv(T* recv_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream)
{
lvhan028's avatar
lvhan028 committed
114
    TM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
115
116
117
118
#ifdef BUILD_MULTI_GPU
    ncclDataType_t nccl_data_type = getNcclDataType<T>();
    NCCLCHECK(ncclRecv(recv_buf, data_size, nccl_data_type, peer, nccl_param.nccl_comm_, stream));
#endif
lvhan028's avatar
lvhan028 committed
119
    TM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
}

template void
ftNcclRecv(float* recv_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclRecv(half* recv_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
#ifdef ENABLE_BF16
template void
ftNcclRecv(__nv_bfloat16* recv_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
#endif
template void ftNcclRecv(int* recv_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclRecv(bool* recv_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclRecv(char* recv_buf, const int data_size, const int peer, NcclParam nccl_param, cudaStream_t stream);

template<typename T>
void ftNcclBroadCast(T* buff, const int data_size, const int root, NcclParam nccl_param, cudaStream_t stream)
{
lvhan028's avatar
lvhan028 committed
139
    TM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
140
141
142
143
#ifdef BUILD_MULTI_GPU
    ncclDataType_t nccl_data_type = getNcclDataType<T>();
    NCCLCHECK(ncclBcast(buff, data_size, nccl_data_type, root, nccl_param.nccl_comm_, stream));
#endif
lvhan028's avatar
lvhan028 committed
144
    TM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
}

template void
ftNcclBroadCast(char* buff, const int data_size, const int root, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclBroadCast(bool* buff, const int data_size, const int root, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclBroadCast(int* buff, const int data_size, const int root, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclBroadCast(float* buff, const int data_size, const int root, NcclParam nccl_param, cudaStream_t stream);
template void
ftNcclBroadCast(half* buff, const int data_size, const int root, NcclParam nccl_param, cudaStream_t stream);
#ifdef ENABLE_BF16
template void
ftNcclBroadCast(__nv_bfloat16* buff, const int data_size, const int root, NcclParam nccl_param, cudaStream_t stream);
#endif

template void ftNcclAllReduceSum(
    const float* send_buf, float* recv_buf, const int data_size, NcclParam nccl_param, cudaStream_t stream);

template void ftNcclAllReduceSum(
    const half* send_buf, half* recv_buf, const int data_size, NcclParam nccl_param, cudaStream_t stream);

template void ftNcclAllReduceSum(
    const int32_t* send_buf, int32_t* recv_buf, const int data_size, NcclParam nccl_param, cudaStream_t stream);

#ifdef ENABLE_BF16
template void ftNcclAllReduceSum(const __nv_bfloat16* send_buf,
                                 __nv_bfloat16*       recv_buf,
                                 const int            data_size,
                                 NcclParam            nccl_param,
                                 cudaStream_t         stream);
#endif

template void ftNcclAllGather(const float* send_buf,
                              float*       recv_buf,
                              const int    data_size,
                              const int    rank,
                              NcclParam    nccl_param,
                              cudaStream_t stream);

template void ftNcclAllGather(const half*  send_buf,
                              half*        recv_buf,
                              const int    data_size,
                              const int    rank,
                              NcclParam    nccl_param,
                              cudaStream_t stream);

#ifdef ENABLE_BF16
template void ftNcclAllGather(const __nv_bfloat16* send_buf,
                              __nv_bfloat16*       recv_buf,
                              const int            data_size,
                              const int            rank,
                              NcclParam            nccl_param,
                              cudaStream_t         stream);
#endif

void ftNcclGroupStart()
{
#ifdef BUILD_MULTI_GPU
    NCCLCHECK(ncclGroupStart());
#endif
}

void ftNcclGroupEnd()
{
#ifdef BUILD_MULTI_GPU
    NCCLCHECK(ncclGroupEnd());
#endif
}

void ftNcclStreamSynchronize(NcclParam tensor_para, NcclParam pipeline_para, cudaStream_t stream)
{
lvhan028's avatar
lvhan028 committed
218
    TM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
219
220
221
222
223
224
225
226
227
228
229
230
231
#ifdef BUILD_MULTI_GPU
    cudaError_t  cudaErr;
    ncclResult_t tensor_ncclErr = ncclSuccess, tensor_ncclAsyncErr = ncclSuccess, pipeline_ncclErr = ncclSuccess,
                 pipeline_ncclAsyncErr = ncclSuccess;
    ncclComm_t tensor_comm             = tensor_para.nccl_comm_;
    ncclComm_t pipeline_comm           = pipeline_para.nccl_comm_;
    if (tensor_para.world_size_ == 1 && pipeline_para.world_size_ == 1) {
        check_cuda_error(cudaStreamSynchronize(stream));
        return;
    }
    while (1) {
        cudaErr = cudaStreamQuery(stream);
        if (cudaErr == cudaSuccess) {
lvhan028's avatar
lvhan028 committed
232
            TM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
            return;
        }

        if (cudaErr != cudaErrorNotReady) {
            std::string error_msg = "CUDA Error : cudaStreamQuery returned " + std::to_string(cudaErr);
            throw std::runtime_error(error_msg);
        }
        if (tensor_para.world_size_ > 1) {
            tensor_ncclErr = ncclCommGetAsyncError(tensor_comm, &tensor_ncclAsyncErr);
        }
        if (pipeline_para.world_size_ > 1) {
            pipeline_ncclErr = ncclCommGetAsyncError(pipeline_comm, &pipeline_ncclAsyncErr);
        }

        if (tensor_ncclErr != ncclSuccess || pipeline_ncclErr != ncclSuccess) {
            std::string error_msg = "NCCL Error : ncclCommGetAsyncError returned " + std::to_string(tensor_ncclErr)
                                    + " (tensor_para) " + std::to_string(pipeline_ncclErr) + " (pipeline_para)";
            throw std::runtime_error(error_msg);
        }

        if (tensor_ncclAsyncErr != ncclSuccess) {
            // An asynchronous error happened. Stop the operation and destroy
            // the communicator
            tensor_ncclErr = ncclCommAbort(tensor_comm);
            if (tensor_ncclErr != ncclSuccess) {
                std::string error_msg = "NCCL Error : ncclCommDestroy returned " + std::to_string(tensor_ncclErr);
                throw std::runtime_error(error_msg);
            }
        }

        if (pipeline_ncclAsyncErr != ncclSuccess) {
            // An asynchronous error happened. Stop the operation and destroy
            // the communicator
            pipeline_ncclErr = ncclCommAbort(pipeline_comm);
            if (pipeline_ncclErr != ncclSuccess) {
                std::string error_msg = "NCCL Error : ncclCommDestroy returned " + std::to_string(pipeline_ncclErr);
                throw std::runtime_error(error_msg);
            }
        }
    }
#endif
}

void ftNcclGetUniqueId(NcclUid& uid)
{
#ifdef BUILD_MULTI_GPU
    NCCLCHECK(ncclGetUniqueId(&uid.nccl_uid_));
#endif
}

void ftNcclCommInitRank(NcclParam& param, const int rank, const int world_size, const NcclUid uid)
{
lvhan028's avatar
lvhan028 committed
285
    TM_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
286
287
288
#ifdef BUILD_MULTI_GPU
    // Initialize a nccl communicator.
    if (param.nccl_comm_ != nullptr) {
lvhan028's avatar
lvhan028 committed
289
        TM_LOG_WARNING("NcclParam is already initialized.");
Li Zhang's avatar
Li Zhang committed
290
291
292
293
294
295
296
        return;
    }
    param.rank_       = rank;
    param.world_size_ = world_size;
    param.nccl_uid_   = uid.nccl_uid_;
    NCCLCHECK(ncclCommInitRank(&param.nccl_comm_, param.world_size_, param.nccl_uid_, param.rank_));
#endif
lvhan028's avatar
lvhan028 committed
297
    TM_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
Li Zhang's avatar
Li Zhang committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
}

void ftNcclParamDestroy(NcclParam& param)
{
#ifdef BUILD_MULTI_GPU
    if (param.nccl_comm_ != nullptr) {
        ncclCommDestroy(param.nccl_comm_);
    }
#endif
}

static std::atomic<int>& ncclGroupCount()
{
    static std::atomic<int> value{};
    return value;
}

int ftNcclNextGroupId()
{
    return ncclGroupCount()++;
}

int ftNcclGroupCount()
{
    return ncclGroupCount();
}

size_t getLocalBatchSize(const size_t batch_size, const size_t seq_len, const size_t pipeline_para_size)
{
    size_t local_batch_size = batch_size;
    if (pipeline_para_size == 1) {
        return local_batch_size;
    }
    if (local_batch_size % pipeline_para_size == 0) {
        local_batch_size /= pipeline_para_size;
    }
    while (local_batch_size * seq_len > 1024 && local_batch_size % 2 == 0) {
        local_batch_size /= 2;
    }
    return local_batch_size;
}

lvhan028's avatar
lvhan028 committed
340
}  // namespace turbomind