README_zh-CN.md 5.18 KB
Newer Older
lvhan028's avatar
lvhan028 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
<div align="center">
  <img src="resources/llmdeploy-logo.png" width="450"/>
  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">OpenMMLab website</font></b>
    <sup>
        <a href="https://openmmlab.com">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b><font size="5">OpenMMLab platform</font></b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i><font size="4">TRY IT OUT</font></i>
      </a>
    </sup>
  </div>
  <div>&nbsp;</div>

[![docs](https://img.shields.io/badge/docs-latest-blue)](https://llmdeploy.readthedocs.io/en/latest/)
[![codecov](https://codecov.io/gh/open-mmlab/llmdeploy/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/llmdeploy)
[![license](https://img.shields.io/github/license/open-mmlab/llmdeploy.svg)](https://github.com/open-mmlab/mmdeploy/tree/main/LICENSE)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/open-mmlab/llmdeploy)](https://github.com/open-mmlab/llmdeploy/issues)
[![open issues](https://img.shields.io/github/issues-raw/open-mmlab/llmdeploy)](https://github.com/open-mmlab/llmdeploy/issues)

[English](README.md) | 简体中文

</div>

<div align="center">
  <a href="https://openmmlab.medium.com/" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218352562-cdded397-b0f3-4ca1-b8dd-a60df8dca75b.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://discord.gg/raweFPmdzG" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
</div>

## 简介

## 安装

```shell
conda create -n open-mmlab python=3.8
conda activate open-mmlab
git clone https://github.com/open-mmlab/llmdeploy.git
cd llmdeploy
pip install -e .
```

## 快速上手

### 部署 [LLaMA](https://github.com/facebookresearch/llama) 服务

请填写[这张表](<(https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform?usp=send_form)>),获取 LLaMA 模型权重。

执行下面任一命令,可以把 LLaMA 模型部署到 NVIDIA GPU Server:

<details open>
<summary><b>7B</b></summary>

```shell
python3 llmdeploy/serve/fastertransformer/deploy.py llama-7B /path/to/llama-7b llama \
    --tokenizer_path /path/to/tokenizer/model
bash workspace/service_docker_up.sh
```

</details>

<details open>
<summary><b>13B</b></summary>

```shell
python3 llmdeploy/serve/fastertransformer/deploy.py llama-13B /path/to/llama-13b llama \
    --tokenizer_path /path/to/tokenizer/model --tp 2
bash workspace/service_docker_up.sh
```

</details>

<details open>
<summary><b>33B</b></summary>

```shell
python3 llmdeploy/serve/fastertransformer/deploy.py llama-33B /path/to/llama-33b llama \
    --tokenizer_path /path/to/tokenizer/model --tp 4
bash workspace/service_docker_up.sh
```

</details>

<details open>
<summary><b>65B</b></summary>

```shell
python3 llmdeploy/serve/fastertransformer/deploy.py llama-65B /path/to/llama-65b llama \
    --tokenizer_path /path/to/tokenizer/model --tp 8
bash workspace/service_docker_up.sh
```

</details>

### 部署 [Vicuna](https://lmsys.org/blog/2023-03-30-vicuna/) 服务

<details open>
<summary><b>7B</b></summary>

```shell
python3 -m pip install fschat
python3 -m fastchat.model.apply_delta \
  --base-model-path /path/to/llama-7b \
  --target-model-path /path/to/vicuna-7b \
  --delta-path lmsys/vicuna-7b-delta-v1.1

python3 llmdeploy/serve/fastertransformer/deploy.py vicuna-7B /path/to/vicuna-7b hf
bash workspace/service_docker_up.sh
```

</details>

<details>
<summary><b>13B</b></summary>

```shell
python3 -m pip install fschat
python3 -m fastchat.model.apply_delta \
  --base-model-path /path/to/llama-13b \
  --target-model-path /path/to/vicuna-13b \
  --delta-path lmsys/vicuna-13b-delta-v1.1

python3 llmdeploy/serve/fastertransformer/deploy.py vicuna-13B /path/to/vicuna-13b hf
bash workspace/service_docker_up.sh
```

</details>

## 通过命令行推理

```shell
python3 llmdeploy/serve/client.py {server_ip_addresss}:33337 1
```

## 贡献指南

我们感谢所有的贡献者为改进和提升 LLMDeploy 所作出的努力。请参考[贡献指南](.github/CONTRIBUTING.md)来了解参与项目贡献的相关指引。

## 致谢

- [FasterTransformer](https://github.com/NVIDIA/FasterTransformer)

## License

该项目采用 [Apache 2.0 开源许可证](LICENSE)