README.md 9.17 KB
Newer Older
lvhan028's avatar
lvhan028 committed
1
<div align="center">
Lyu Han's avatar
Lyu Han committed
2
  <img src="resources/lmdeploy-logo.svg" width="450"/>
lvhan028's avatar
lvhan028 committed
3

RunningLeon's avatar
RunningLeon committed
4
5
6
7
8
9
10
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://lmdeploy.readthedocs.io/en/latest/)
[![badge](https://github.com/InternLM/lmdeploy/workflows/lint/badge.svg)](https://github.com/InternLM/lmdeploy/actions)
[![PyPI](https://img.shields.io/pypi/v/lmdeploy)](https://pypi.org/project/lmdeploy)
[![license](https://img.shields.io/github/license/InternLM/lmdeploy.svg)](https://github.com/InternLM/lmdeploy/tree/main/LICENSE)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/InternLM/lmdeploy)](https://github.com/InternLM/lmdeploy/issues)
[![open issues](https://img.shields.io/github/issues-raw/InternLM/lmdeploy)](https://github.com/InternLM/lmdeploy/issues)

lvhan028's avatar
lvhan028 committed
11
12
13
14
English | [简体中文](README_zh-CN.md)

</div>

15
<p align="center">
vansin's avatar
vansin committed
16
    👋 join us on <a href="https://twitter.com/intern_lm" target="_blank">Twitter</a>, <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://r.vansin.top/?r=internwx" target="_blank">WeChat</a>
17
</p>
lvhan028's avatar
lvhan028 committed
18

19
20
______________________________________________________________________

q.yao's avatar
q.yao committed
21
## News 🎉
22

Lyu Han's avatar
Lyu Han committed
23
- \[2023/09\] TurboMind supports InternLM-20B
Lyu Han's avatar
Lyu Han committed
24
- \[2023/09\] TurboMind supports all features of Code Llama: code completion, infilling, chat / instruct, and python specialist. Click [here](./docs/en/supported_models/codellama.md) for deployment guide
25
- \[2023/09\] TurboMind supports Baichuan2-7B
q.yao's avatar
q.yao committed
26
- \[2023/08\] TurboMind supports flash-attention2.
27
- \[2023/08\] TurboMind supports Qwen-7B, dynamic NTK-RoPE scaling and dynamic logN scaling
Chen Xin's avatar
Chen Xin committed
28
- \[2023/08\] TurboMind supports Windows (tp=1)
29
- \[2023/08\] TurboMind supports 4-bit inference, 2.4x faster than FP16, the fastest open-source implementation🚀. Check [this](./docs/en/w4a16.md) guide for detailed info
pppppM's avatar
pppppM committed
30
31
- \[2023/08\] LMDeploy has launched on the [HuggingFace Hub](https://huggingface.co/lmdeploy), providing ready-to-use 4-bit models.
- \[2023/08\] LMDeploy supports 4-bit quantization using the [AWQ](https://arxiv.org/abs/2306.00978) algorithm.
32
33
- \[2023/07\] TurboMind supports Llama-2 70B with GQA.
- \[2023/07\] TurboMind supports Llama-2 7B/13B.
q.yao's avatar
q.yao committed
34
- \[2023/07\] TurboMind supports tensor-parallel inference of InternLM.
35
36
37

______________________________________________________________________

lvhan028's avatar
lvhan028 committed
38
39
## Introduction

lvhan028's avatar
lvhan028 committed
40
41
LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the [MMRazor](https://github.com/open-mmlab/mmrazor) and [MMDeploy](https://github.com/open-mmlab/mmdeploy) teams. It has the following core features:

tpoisonooo's avatar
tpoisonooo committed
42
- **Efficient Inference Engine (TurboMind)**: Based on [FasterTransformer](https://github.com/NVIDIA/FasterTransformer), we have implemented an efficient inference engine - TurboMind, which supports the inference of LLaMA and its variant models on NVIDIA GPUs.
lvhan028's avatar
lvhan028 committed
43

44
- **Interactive Inference Mode**: By caching the k/v of attention during multi-round dialogue processes, it remembers dialogue history, thus avoiding repetitive processing of historical sessions.
lvhan028's avatar
lvhan028 committed
45

tpoisonooo's avatar
tpoisonooo committed
46
- **Multi-GPU Model Deployment and Quantization**: We provide comprehensive model deployment and quantification support, and have been validated at different scales.
47
48

- **Persistent Batch Inference**: Further optimization of model execution efficiency.
lvhan028's avatar
lvhan028 committed
49

pppppM's avatar
pppppM committed
50
![PersistentBatchInference](https://github.com/InternLM/lmdeploy/assets/67539920/e3876167-0671-44fc-ac52-5a0f9382493e)
lvhan028's avatar
lvhan028 committed
51

pppppM's avatar
pppppM committed
52
53
54
55
56
57
58
59
60
## Supported Models

`LMDeploy` has two inference backends, `Pytorch` and `TurboMind`.

### TurboMind

> **Note**<br />
> W4A16 inference requires Nvidia GPU with Ampere architecture or above.

Lyu Han's avatar
Lyu Han committed
61
62
63
64
|    Models    | Tensor Parallel | FP16 | KV INT8 | W4A16 | W8A8 |
| :----------: | :-------------: | :--: | :-----: | :---: | :--: |
|    Llama     |       Yes       | Yes  |   Yes   |  Yes  |  No  |
|    Llama2    |       Yes       | Yes  |   Yes   |  Yes  |  No  |
Lyu Han's avatar
Lyu Han committed
65
66
| InternLM-7B  |       Yes       | Yes  |   Yes   |  Yes  |  No  |
| InternLM-20B |       Yes       | Yes  |   Yes   |  Yes  |  No  |
Lyu Han's avatar
Lyu Han committed
67
68
69
70
|   QWen-7B    |       Yes       | Yes  |   Yes   |  No   |  No  |
| Baichuan-7B  |       Yes       | Yes  |   Yes   |  Yes  |  No  |
| Baichuan2-7B |       Yes       | Yes  |   No    |  No   |  No  |
|  Code Llama  |       Yes       | Yes  |   No    |  No   |  No  |
pppppM's avatar
pppppM committed
71
72
73

### Pytorch

Lyu Han's avatar
Lyu Han committed
74
75
76
77
78
|   Models    | Tensor Parallel | FP16 | KV INT8 | W4A16 | W8A8 |
| :---------: | :-------------: | :--: | :-----: | :---: | :--: |
|    Llama    |       Yes       | Yes  |   No    |  No   |  No  |
|   Llama2    |       Yes       | Yes  |   No    |  No   |  No  |
| InternLM-7B |       Yes       | Yes  |   No    |  No   |  No  |
pppppM's avatar
pppppM committed
79

lvhan028's avatar
lvhan028 committed
80
81
## Performance

82
**Case I**: output token throughput with fixed input token and output token number (1, 2048)
lvhan028's avatar
lvhan028 committed
83

84
**Case II**: request throughput with real conversation data
lvhan028's avatar
lvhan028 committed
85

86
Test Setting: LLaMA-7B, NVIDIA A100(80G)
lvhan028's avatar
lvhan028 committed
87

88
89
The output token throughput of TurboMind exceeds 2000 tokens/s, which is about 5% - 15% higher than DeepSpeed overall and outperforms huggingface transformers by up to 2.3x.
And the request throughput of TurboMind is 30% higher than vLLM.
lvhan028's avatar
lvhan028 committed
90

91
![benchmark](https://github.com/InternLM/lmdeploy/assets/4560679/7775c518-608e-4e5b-be73-7645a444e774)
lvhan028's avatar
lvhan028 committed
92

lvhan028's avatar
lvhan028 committed
93
94
95
## Quick Start

### Installation
lvhan028's avatar
lvhan028 committed
96

97
Install lmdeploy with pip ( python 3.8+) or [from source](./docs/en/build.md)
lvhan028's avatar
lvhan028 committed
98
99

```shell
lvhan028's avatar
lvhan028 committed
100
pip install lmdeploy
lvhan028's avatar
lvhan028 committed
101
102
```

lvhan028's avatar
lvhan028 committed
103
### Deploy InternLM
lvhan028's avatar
lvhan028 committed
104

lvhan028's avatar
lvhan028 committed
105
#### Get InternLM model
lvhan028's avatar
lvhan028 committed
106
107

```shell
lvhan028's avatar
lvhan028 committed
108
# 1. Download InternLM model
lvhan028's avatar
lvhan028 committed
109

pppppM's avatar
pppppM committed
110
111
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
del-zhenwu's avatar
del-zhenwu committed
112
git clone https://huggingface.co/internlm/internlm-chat-7b /path/to/internlm-chat-7b
pppppM's avatar
pppppM committed
113
114
115
116
117

# if you want to clone without large files – just their pointers
# prepend your git clone with the following env var:
GIT_LFS_SKIP_SMUDGE=1

lvhan028's avatar
lvhan028 committed
118
# 2. Convert InternLM model to turbomind's format, which will be in "./workspace" by default
119
python3 -m lmdeploy.serve.turbomind.deploy internlm-chat-7b /path/to/internlm-chat-7b
lvhan028's avatar
lvhan028 committed
120
121
122

```

lvhan028's avatar
lvhan028 committed
123
#### Inference by TurboMind
lvhan028's avatar
lvhan028 committed
124
125

```shell
lvhan028's avatar
lvhan028 committed
126
python -m lmdeploy.turbomind.chat ./workspace
lvhan028's avatar
lvhan028 committed
127
128
```

129
130
131
132
133
134
135
> **Note**<br />
> When inferring with FP16 precision, the InternLM-7B model requires at least 15.7G of GPU memory overhead on TurboMind. <br />
> It is recommended to use NVIDIA cards such as 3090, V100, A100, etc.
> Disable GPU ECC can free up 10% memory, try `sudo nvidia-smi --ecc-config=0` and reboot system.

> **Note**<br />
> Tensor parallel is available to perform inference on multiple GPUs. Add `--tp=<num_gpu>` on `chat` to enable runtime TP.
lvhan028's avatar
lvhan028 committed
136

137
138
139
140
141
142
143
144
#### Serving with gradio

```shell
python3 -m lmdeploy.serve.gradio.app ./workspace
```

![](https://github.com/InternLM/lmdeploy/assets/67539920/08d1e6f2-3767-44d5-8654-c85767cec2ab)

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#### Serving with Restful API

Launch inference server by:

```shell
python3 -m lmdeploy.serve.openai.api_server ./workspace server_ip server_port --instance_num 32 --tp 1
```

Then, you can communicate with it by command line,

```shell
# restful_api_url is what printed in api_server.py, e.g. http://localhost:23333
python -m lmdeploy.serve.openai.api_client restful_api_url
```

or webui,

```shell
# restful_api_url is what printed in api_server.py, e.g. http://localhost:23333
# server_ip and server_port here are for gradio ui
# example: python -m lmdeploy.serve.gradio.app http://localhost:23333 localhost 6006 --restful_api True
python -m lmdeploy.serve.gradio.app restful_api_url server_ip --restful_api True
```

Refer to [restful_api.md](docs/en/restful_api.md) for more details.

171
#### Serving with Triton Inference Server
lvhan028's avatar
lvhan028 committed
172

lvhan028's avatar
lvhan028 committed
173
Launch inference server by:
lvhan028's avatar
lvhan028 committed
174
175

```shell
lvhan028's avatar
lvhan028 committed
176
bash workspace/service_docker_up.sh
lvhan028's avatar
lvhan028 committed
177
178
```

lvhan028's avatar
lvhan028 committed
179
Then, you can communicate with the inference server by command line,
lvhan028's avatar
lvhan028 committed
180
181

```shell
182
python3 -m lmdeploy.serve.client {server_ip_addresss}:33337
lvhan028's avatar
lvhan028 committed
183
184
```

lvhan028's avatar
lvhan028 committed
185
or webui,
AllentDan's avatar
AllentDan committed
186

vansin's avatar
vansin committed
187
```shell
188
python3 -m lmdeploy.serve.gradio.app {server_ip_addresss}:33337
AllentDan's avatar
AllentDan committed
189
190
```

191
For the deployment of other supported models, such as LLaMA, LLaMA-2, vicuna and so on, you can find the guide from [here](docs/en/serving.md)
lvhan028's avatar
lvhan028 committed
192

WRH's avatar
WRH committed
193
194
### Inference with PyTorch

195
For detailed instructions on Inference pytorch models, see [here](docs/en/pytorch.md).
196

WRH's avatar
WRH committed
197
198
199
#### Single GPU

```shell
WRH's avatar
WRH committed
200
python3 -m lmdeploy.pytorch.chat $NAME_OR_PATH_TO_HF_MODEL \
WRH's avatar
WRH committed
201
202
203
204
205
206
207
208
209
    --max_new_tokens 64 \
    --temperture 0.8 \
    --top_p 0.95 \
    --seed 0
```

#### Tensor Parallel with DeepSpeed

```shell
WRH's avatar
WRH committed
210
deepspeed --module --num_gpus 2 lmdeploy.pytorch.chat \
WRH's avatar
WRH committed
211
212
213
214
215
216
217
    $NAME_OR_PATH_TO_HF_MODEL \
    --max_new_tokens 64 \
    --temperture 0.8 \
    --top_p 0.95 \
    --seed 0
```

218
219
220
221
222
223
You need to install deepspeed first to use this feature.

```
pip install deepspeed
```

224
225
## Quantization

pppppM's avatar
pppppM committed
226
227
#### Weight INT4 Quantization

228
LMDeploy uses [AWQ](https://arxiv.org/abs/2306.00978) algorithm for model weight quantization
pppppM's avatar
pppppM committed
229

230
[Click here](./docs/en/w4a16.md) to view the test results for weight int4 usage.
231

232
#### KV Cache INT8 Quantization
lvhan028's avatar
lvhan028 committed
233

234
[Click here](./docs/en/kv_int8.md) to view the usage method, implementation formula, and test results for kv int8.
235

236
> **Warning**<br />
237
> runtime Tensor Parallel for quantized model is not available. Please setup `--tp` on `deploy` to enable static TP.
238

lvhan028's avatar
lvhan028 committed
239
## Contributing
lvhan028's avatar
lvhan028 committed
240

lvhan028's avatar
lvhan028 committed
241
We appreciate all contributions to LMDeploy. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
242

lvhan028's avatar
lvhan028 committed
243
244
245
## Acknowledgement

- [FasterTransformer](https://github.com/NVIDIA/FasterTransformer)
pppppM's avatar
pppppM committed
246
- [llm-awq](https://github.com/mit-han-lab/llm-awq)
lvhan028's avatar
lvhan028 committed
247
248
249
250

## License

This project is released under the [Apache 2.0 license](LICENSE).