chatbot.py 20.4 KB
Newer Older
lvhan028's avatar
lvhan028 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) OpenMMLab. All rights reserved.
import json
import logging
import queue
import random
import threading
from dataclasses import dataclass
from enum import Enum
from functools import partial
from typing import List, Union

import google.protobuf.json_format
import mmengine
import numpy as np
import tritonclient.grpc as grpcclient
from tritonclient.grpc.service_pb2 import ModelInferResponse

lvhan028's avatar
lvhan028 committed
18
from llmdeploy.model import MODELS
lvhan028's avatar
lvhan028 committed
19
20
21
22
23
24
25
26
27
from llmdeploy.serve.fastertransformer.utils import (Postprocessor,
                                                     Preprocessor,
                                                     prepare_tensor)


@dataclass
class Session:
    session_id: Union[int, str]
    request_id: str = ''
lvhan028's avatar
lvhan028 committed
28
    histories: str = ''  # history conversations of the session
lvhan028's avatar
lvhan028 committed
29
    sequence_length: int = 0  # the total generated token number in the session
lvhan028's avatar
lvhan028 committed
30
    prompt: str = ''
lvhan028's avatar
lvhan028 committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    response: str = ''
    status: int = None  # status of the session


class StatusCode(Enum):
    TRITON_STREAM_END = 0  # end of streaming
    TRITON_STREAM_ING = 1  # response is in streaming
    TRITON_SERVER_ERR = -1  # triton server's error
    TRITON_SESSION_CLOSED = -2  # session has been closed
    TRITON_SESSION_OUT_OF_LIMIT = -3  # request length out of limit
    TRITON_SESSION_INVALID_ARG = -4  # invalid argument


def stream_callback(que, result, error):
    if error:
        print(error)
        que.put(dict(errcode=StatusCode.TRITON_SERVER_ERR, errmsg=f'{error}'))
    else:
        que.put(result.get_response(as_json=True))


def get_logger(log_file=None, log_level=logging.INFO):
    from .utils import get_logger
    logger = get_logger('service.ft', log_file=log_file, log_level=log_level)
    return logger


class Chatbot:
    """Chatbot for LLaMA series models with fastertransformer as inference
    engine.

    Args:
        tritonserver_addr (str): communicating address '<ip>:<port>' of
            triton inference server
        model_name (str): name of the to-be-deployed mode
        session_len (int): the maximum context length of the model
        top_p (float): If set to float < 1, only the smallest set of most
            probable tokens with probabilities that add up to top_p or higher
            are kept for generation.
        top_k (int): The number of the highest probability vocabulary tokens to
            keep for top-k-filtering
        temperature (float): to modulate the next token probability
        repetition_penalty (float): The parameter for repetition penalty.
            1.0 means no penalty
        log_level (int): the level of the log
        display (bool): display the generated text on consolo or not
lvhan028's avatar
lvhan028 committed
77
        profile_generation (bool): profile token generation or not
lvhan028's avatar
lvhan028 committed
78
79
80
81
82
83
84
85
86
87
    """

    def __init__(self,
                 tritonserver_addr: str,
                 model_name: str,
                 session_len: int = 2048,
                 top_p: float = 1.0,
                 top_k: int = 40,
                 temperature: float = 1.0,
                 repetition_penalty: float = 1.0,
lvhan028's avatar
lvhan028 committed
88
                 ignore_eos: bool = False,
lvhan028's avatar
lvhan028 committed
89
                 log_level: int = logging.INFO,
lvhan028's avatar
lvhan028 committed
90
91
92
93
94
95
96
97
                 display: bool = False,
                 profile_generation: bool = False,
                 profile_serving: bool = False):
        assert model_name in MODELS.module_dict.keys(), \
            f"'{model_name}' is not supported. " \
            f'The supported models are: {MODELS.module_dict.keys()}'
        self.model_name = model_name
        self.model = MODELS.get(self.model_name)()
lvhan028's avatar
lvhan028 committed
98
99
        self._session = None
        self.tritonserver_addr = tritonserver_addr
lvhan028's avatar
lvhan028 committed
100
101
102
103
104
105
106
107
108
        self.preprocess = Preprocessor(tritonserver_addr)
        self.postprocess = Postprocessor(tritonserver_addr)
        self.bos_id = self._get_bos()
        self.eos_id = self._get_eos()
        stop_words = self._stop_words(self.model.stop_words)
        bad_words = None
        if ignore_eos:
            stop_words = None
            bad_words = np.array([[[self.eos_id], [1]]], dtype=np.int32)
lvhan028's avatar
lvhan028 committed
109
        self.cfg = mmengine.Config(
q.yao's avatar
q.yao committed
110
111
112
113
114
115
116
117
            dict(
                session_len=session_len,
                top_p=top_p,
                top_k=top_k,
                temperature=temperature,
                repetition_penalty=repetition_penalty,
                stop_words=stop_words,
                bad_words=bad_words))
lvhan028's avatar
lvhan028 committed
118
119
        self.log_level = log_level
        self.display = display
lvhan028's avatar
lvhan028 committed
120
121
        self.profile_generation = profile_generation
        self.profile_serving = profile_serving
lvhan028's avatar
lvhan028 committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

    def stream_infer(self,
                     session_id: int,
                     prompt: str,
                     request_id: str = '',
                     request_output_len: int = None,
                     sequence_start: bool = False,
                     sequence_end: bool = False,
                     *args,
                     **kwargs):
        """Start a new round conversion of a session.

        Args:
            session_id (int): the identical id of a session
            prompt (str): user's prompt in this round conversation
            request_id (str): the identical id of this round conversation
            request_output_len (int): the expected generated token numbers
            sequence_start (bool): start flag of a session
            sequence_end (bool): end flag of a session
        Returns:
            iterator: The generated content by chatbot
        """
        assert isinstance(session_id, int), \
            f'INT session id is required, but got {type(session_id)}'

        logger = get_logger(log_level=self.log_level)
        logger.info(f'session {session_id}, request_id {request_id}, '
                    f'request_output_len {request_output_len}')

        if self._session is None:
            sequence_start = True
            self._session = Session(session_id=session_id)
        elif self._session.status == 0:
            logger.error(f'session {session_id} has been ended. Please set '
                         f'`sequence_start` be True if you want to restart it')
            yield StatusCode.TRITON_SESSION_CLOSED, '', 0
            return

        self._session.status = 1
        self._session.request_id = request_id
        self._session.response = ''

lvhan028's avatar
lvhan028 committed
164
165
166
        self._session.prompt = self._get_prompt(prompt, sequence_start)
        for status, res, tokens in self._stream_infer(self._session,
                                                      self._session.prompt,
lvhan028's avatar
lvhan028 committed
167
168
169
170
                                                      request_output_len,
                                                      sequence_start,
                                                      sequence_end):
            yield status, res, tokens
lvhan028's avatar
lvhan028 committed
171
172
173
        self._session.histories = \
            self._session.histories + self._session.prompt + \
            self._session.response
lvhan028's avatar
lvhan028 committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

    def end(self, session_id: int, *args, **kwargs):
        """end a session. Triton inference server will release the session's
        occupied resource when it is ended.

        Args:
            session_id (int): the identical id of a session

        Returns:
            int: 0: success, -1: session not found
        """
        assert isinstance(session_id, int), \
            f'INT session id is required, but got {type(session_id)}'

        logger = get_logger(log_level=self.log_level)
        logger.info(f'end session: {session_id}')

        if self._session is None:
            logger.error(
                f"session {session_id} doesn't exist. It cannot be ended")
            return StatusCode.TRITON_SESSION_INVALID_ARG
        if self._session.session_id != session_id:
            logger.error(f'you cannot end session {session_id}, because this '
                         f'session is {self._session.session_id}')
            return StatusCode.TRITON_SESSION_INVALID_ARG
        if self._session.status == 0:
            logger.warning(f'session {session_id} has already been ended')
            return StatusCode.TRITON_SESSION_CLOSED

        self._session.status = 0
q.yao's avatar
q.yao committed
204
205
206
207
208
209
        for status, _, _ in self._stream_infer(
                self._session,
                prompt='',
                request_output_len=0,
                sequence_start=False,
                sequence_end=True):
lvhan028's avatar
lvhan028 committed
210
211
            if status != StatusCode.TRITON_STREAM_END:
                return status
q.yao's avatar
q.yao committed
212
213

        self.reset_session()
lvhan028's avatar
lvhan028 committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        return StatusCode.TRITON_STREAM_END

    def cancel(self, session_id: int, *args, **kwargs):
        """Cancel the session during generating tokens.

        Args:
            session_id (int): the identical id of a session

        Returns:
            int: 0: success, -1: session not found
        """
        assert isinstance(session_id, int), \
            f'INT session id is required, but got {type(session_id)}'
        logger = get_logger(log_level=self.log_level)
        logger.info(f'cancel session: {session_id}')

        if self._session is None:
            logger.error(
                f"session {session_id} doesn't exist. It cannot be cancelled")
            return StatusCode.TRITON_SESSION_INVALID_ARG
        if self._session.session_id != session_id:
            logger.error(
                f'you cannot cancel session {session_id}, because this '
                f'session is {self._session.session_id}')
            return StatusCode.TRITON_SESSION_INVALID_ARG
        if self._session.status == 0:
            logger.error(f'session {session_id} has already been ended. '
                         f'It cannot be cancelled')
            return StatusCode.TRITON_SESSION_CLOSED

        prev_session = self._session
q.yao's avatar
q.yao committed
245
246
247
248
249
250
251
        for status, res, _ in self._stream_infer(
                self._session,
                prompt='',
                request_output_len=0,
                sequence_start=False,
                sequence_end=False,
                cancel=True):
lvhan028's avatar
lvhan028 committed
252
253
254
255
            if status.value < 0:
                break
        if status == StatusCode.TRITON_STREAM_END:
            logger.info(f'cancel session {session_id} successfully')
lvhan028's avatar
lvhan028 committed
256
            if prev_session.histories:
lvhan028's avatar
lvhan028 committed
257
258
259
260
261
                logger.warn(f'TODO: start to recover session {session_id}')
        else:
            logger.info(f'cancel session {session_id} failed: {res}')
        return status

lvhan028's avatar
lvhan028 committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    def reset_session(self):
        self._session = None

    def _get_bos(self):
        token_ids, _ = self.preprocess('<BOS>')
        return token_ids[0][0]

    def _get_eos(self):
        token_ids, _ = self.preprocess('<EOS>')
        return token_ids[0][0]

    def _stop_words(self, stop_words: List[int]):
        if stop_words is None:
            return None
        assert isinstance(stop_words, List) and \
               all(isinstance(elem, int) for elem in stop_words), \
               f'stop_words must be a list but got {type(stop_words)}'
        # each id in stop_words represents a stop word
        # refer to https://github.com/fauxpilot/fauxpilot/discussions/165 for
        # detailed explanation about fastertransformer's stop_words
        stop_word_offsets = range(1, len(stop_words) + 1)
        stop_words = np.array([[stop_words,
                                stop_word_offsets]]).astype(np.int32)
        return stop_words

lvhan028's avatar
lvhan028 committed
287
    def _get_prompt(self, prompt: str, sequence_start: bool):
lvhan028's avatar
lvhan028 committed
288
        if self.profile_generation or self.profile_serving:
289
            return prompt
lvhan028's avatar
lvhan028 committed
290
        return self.model.get_prompt(prompt, sequence_start)
lvhan028's avatar
lvhan028 committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

    def _stream_infer(self,
                      session: Session,
                      prompt: str,
                      request_output_len: int = 512,
                      sequence_start: bool = True,
                      sequence_end: bool = False,
                      cancel: bool = False):
        logger = get_logger(log_level=self.log_level)
        logger.info(f'session {session.session_id}, '
                    f'request id {session.request_id}, '
                    f'request_output_len {request_output_len}, '
                    f'start {sequence_start}, '
                    f'end {sequence_end}, cancel {cancel}')

        assert request_output_len is None or \
               isinstance(request_output_len, int), \
               f'request_output_len is supposed to be None or int, ' \
               f'but got {type(request_output_len)}'

lvhan028's avatar
lvhan028 committed
311
312
313
314
315
316
        if sequence_start:
            logger.info(f'session {session.session_id}, clear history since '
                        f'sequence_start is True')
            session.histories = ''
            session.sequence_length = 0

lvhan028's avatar
lvhan028 committed
317
318
        input_ids, input_lengths = self.preprocess(prompt)
        input_tokens = input_lengths.squeeze()
lvhan028's avatar
lvhan028 committed
319
320
321
        if self.profile_generation:
            yield StatusCode.TRITON_STREAM_ING, \
                  'ignore preprocessing during profiling generation', 0
lvhan028's avatar
lvhan028 committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        if request_output_len is None:
            request_output_len = max(
                128,
                self.cfg.session_len - session.sequence_length - input_tokens)

        if input_tokens + request_output_len + \
                session.sequence_length > self.cfg.session_len:
            errmsg = f'session {session.session_id}, ' \
                     f'out of max sequence length {self.cfg.session_len}, ' \
                     f'#input tokens {input_tokens}, ' \
                     f'history tokens {session.sequence_length}, ' \
                     f'request length {request_output_len}'
            yield StatusCode.TRITON_SESSION_OUT_OF_LIMIT, errmsg, 0
        logger.info(f'session {session.session_id}, '
                    f'input tokens: {input_tokens}, '
                    f'request tokens: {request_output_len}, '
                    f'history tokens: {session.sequence_length}')

        preseq_length = session.sequence_length
lvhan028's avatar
lvhan028 committed
341
        session.response = ''
lvhan028's avatar
lvhan028 committed
342
343

        que = queue.Queue()
q.yao's avatar
q.yao committed
344
345
346
347
348
        producer = threading.Thread(
            target=self._stream_producer,
            args=(self.tritonserver_addr, session, que, self.cfg, input_ids,
                  input_lengths, request_output_len, sequence_start,
                  sequence_end, preseq_length, cancel))
lvhan028's avatar
lvhan028 committed
349
        producer.start()
lvhan028's avatar
lvhan028 committed
350
351
352
        for state, res, tokens in self.stream_consumer(
                self.postprocess, que, session, preseq_length, cancel, logger,
                self.display, self.profile_generation, self.eos_id):
lvhan028's avatar
lvhan028 committed
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
            if state.value < 0:
                yield state, res, 0
            else:
                yield state, res, tokens - input_tokens
        producer.join()
        self._session = que.get()
        curseq_length = self._session.sequence_length
        logger.info(f'session {session.session_id}, pre seq_len '
                    f'{preseq_length}, cur seq_len {curseq_length}, '
                    f'diff {curseq_length - preseq_length}')

    @staticmethod
    def _stream_producer(tritonserver_addr, session, que, cfg, input_ids,
                         input_lengths, request_output_len, sequence_start,
                         sequence_end, preseq_length, cancel):
        request_output_len = np.full(input_lengths.shape,
                                     request_output_len).astype(np.uint32)

        callback = partial(stream_callback, que)
        with grpcclient.InferenceServerClient(tritonserver_addr) as client:
            inputs = [
                prepare_tensor('input_ids', input_ids),
                prepare_tensor('input_lengths', input_lengths),
                prepare_tensor('request_output_len', request_output_len),
                prepare_tensor('runtime_top_k',
                               cfg.top_k * np.ones((1, 1), dtype=np.uint32)),
                prepare_tensor('runtime_top_p',
                               cfg.top_p * np.ones((1, 1), dtype=np.float32)),
                prepare_tensor(
                    'temperature',
                    cfg.temperature * np.ones((1, 1), dtype=np.float32)),
                prepare_tensor(
                    'repetition_penalty',
                    cfg.repetition_penalty * np.ones(
                        (1, 1), dtype=np.float32)),
                prepare_tensor('step',
                               preseq_length * np.ones((1, 1), dtype=np.int32))
            ]
            if cfg.stop_words is not None:
                inputs += [prepare_tensor('stop_words_list', cfg.stop_words)]
            if cfg.bad_words is not None:
                inputs += [prepare_tensor('bad_words_list', cfg.bad_words)]

            inputs += [
                prepare_tensor(
                    'session_len',
                    cfg.session_len *
                    np.ones([input_ids.shape[0], 1], dtype=np.uint32)),
                prepare_tensor('START', (1 if sequence_start else 0) * np.ones(
                    (1, 1), dtype=np.int32)),
                prepare_tensor('END', (1 if sequence_end else 0) * np.ones(
                    (1, 1), dtype=np.int32)),
                prepare_tensor(
                    'CORRID',
                    session.session_id * np.ones((1, 1), dtype=np.uint64)),
                prepare_tensor('STOP', (1 if cancel else 0) * np.ones(
                    (1, 1), dtype=np.int32))
            ]
            if sequence_start:
                random_seed = random.getrandbits(64)
                inputs += [
                    prepare_tensor(
                        'random_seed',
                        random_seed * np.ones((1, 1), dtype=np.uint64))
                ]
            client.start_stream(callback)
q.yao's avatar
q.yao committed
419
420
421
422
423
424
425
            client.async_stream_infer(
                'fastertransformer',
                inputs,
                sequence_id=session.session_id,
                request_id=session.request_id,
                sequence_start=sequence_start,
                sequence_end=sequence_end)
lvhan028's avatar
lvhan028 committed
426
427
428
429
        que.put(None)

    @staticmethod
    def stream_consumer(postprocess, res_queue, session, preseq_length, cancel,
lvhan028's avatar
lvhan028 committed
430
                        logger, display, profile_generation, eos_id):
lvhan028's avatar
lvhan028 committed
431
432
433
434

        while True:
            result = res_queue.get()
            if result is None:
lvhan028's avatar
lvhan028 committed
435
436
                yield StatusCode.TRITON_STREAM_END, \
                      session.response[len(session.prompt):], \
lvhan028's avatar
lvhan028 committed
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
                      session.sequence_length - preseq_length
                break
            if 'errcode' in result:
                logger.error(f'got error from fastertransformer, code '
                             f"{result['errcode']}, {result['errmsg']}, "
                             f'token {session.sequence_length}')
                session.sequence_length = preseq_length
                yield result['errcode'], result['errmsg'], 0
                break
            if cancel:
                continue
            try:
                message = ModelInferResponse()
                google.protobuf.json_format.Parse(json.dumps(result), message)
                result = grpcclient.InferResult(message)
                sequence_length = result.as_numpy('sequence_length')
                output_ids = result.as_numpy('output_ids')

                session.sequence_length = sequence_length.squeeze()
                sequence_length = sequence_length - preseq_length
lvhan028's avatar
lvhan028 committed
457
458
459
460
                last_token_id = output_ids[-1][-1][session.sequence_length - 1]
                if last_token_id == eos_id:
                    session.sequence_length = session.sequence_length - 1
                    sequence_length = sequence_length - 1
lvhan028's avatar
lvhan028 committed
461
462
463
464

                output_ids = output_ids.reshape((1, 1, output_ids.shape[-1]))
                sequence_length = sequence_length.reshape(
                    (1, sequence_length.shape[-1]))
lvhan028's avatar
lvhan028 committed
465
466
467
468
469
470

                if profile_generation:
                    yield (StatusCode.TRITON_STREAM_ING,
                           'postprocessing is ignored during profiling '
                           'token generation', sequence_length.squeeze())
                    continue
lvhan028's avatar
lvhan028 committed
471
472
473
474
                output_str = postprocess(output_ids[:, :, preseq_length:],
                                         sequence_length)
                text = output_str[0].decode()
                if display:
lvhan028's avatar
lvhan028 committed
475
                    new_text = text[len(session.response):]
lvhan028's avatar
lvhan028 committed
476
                    print(new_text, end='', flush=True)
lvhan028's avatar
lvhan028 committed
477
478
479
480
481
                session.response = text
                if len(session.response) > len(session.prompt):
                    yield (StatusCode.TRITON_STREAM_ING,
                           session.response[len(session.prompt):],
                           sequence_length.squeeze())
lvhan028's avatar
lvhan028 committed
482
483
484
            except Exception as e:
                logger.error(f'catch exception: {e}')

lvhan028's avatar
lvhan028 committed
485
        session.response = session.response[len(session.prompt):]
lvhan028's avatar
lvhan028 committed
486
487
488
489
490
491
492
        # put session back to queue so that `_stream_infer` can update it in
        # `self.sessions`
        while not res_queue.empty():
            res_queue.get()
        res_queue.put(session)
        if display:
            print('\n')