profile_throughput.py 4.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import json
import os.path as osp
import random
import time
from queue import Queue
from threading import Thread
from typing import List, Tuple

import fire

11
12
from lmdeploy.tokenizer import Tokenizer
from lmdeploy.turbomind import TurboMind
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57


def sample_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: Tokenizer,
) -> List[Tuple[str, int, int]]:
    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
    # Filter out the conversations with less than 2 turns.
    dataset = [data for data in dataset if len(data['conversations']) >= 2]
    # Only keep the first two turns of each conversation.
    dataset = [(data['conversations'][0]['value'],
                data['conversations'][1]['value']) for data in dataset]

    # Tokenize the prompts and completions.
    prompts = [prompt for prompt, _ in dataset]
    prompt_token_ids = tokenizer(prompts).input_ids
    completions = [completion for _, completion in dataset]
    completion_token_ids = tokenizer(completions).input_ids
    tokenized_dataset = []
    for i in range(len(dataset)):
        output_len = len(completion_token_ids[i])
        tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))

    # Filter out too long sequences.
    filtered_dataset: List[Tuple[str, int, int]] = []
    for prompt, prompt_token_ids, output_len in tokenized_dataset:
        prompt_len = len(prompt_token_ids)
        if prompt_len < 4 or output_len < 4:
            # Prune too short sequences.
            continue
        if prompt_len > 1024 or prompt_len + output_len > 2048:
            # Prune too long sequences.
            continue
        filtered_dataset.append((prompt, prompt_len, output_len))

    # Sample the requests.
    sampled_requests = random.sample(filtered_dataset, num_requests)
    return sampled_requests


class Engine:

58
    def __init__(self, model_path: str, tp: int = 1):
59
60
61
        tokenizer_model_path = osp.join(model_path, 'triton_models',
                                        'tokenizer')
        tokenizer = Tokenizer(tokenizer_model_path)
62
        tm_model = TurboMind(model_path=model_path, tp=tp)
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        self.tm_model = tm_model
        self.tokenizer = tokenizer

    def _inference(self, queue, session_id: int):

        model_inst = self.tm_model.create_instance()
        while True:
            request = queue.get()
            if request is None:
                # stop signal
                queue.put(None)
                return
            else:
                prompt, _, output_seqlen = request
                input_ids = self.tokenizer.encode(prompt)

                for outputs in model_inst.stream_infer(
                        session_id,
                        input_ids=input_ids,
                        request_output_len=output_seqlen,
                        temperature=1.0,
                        top_p=1.0,
                        sequence_start=True,
                        sequence_end=True,
                        ignore_eos=True):
                    res, tokens = outputs[0]
                    self.tokenizer.decode(res)

    def process_request(self, requests, concurrency: int = 1):
        q = Queue()
        threads = []

        start = time.time()

        # start threads
        for i in range(concurrency):
            t = Thread(target=self._inference, args=(q, i))
            t.start()
            threads.append(t)

        # feed request to q
        for req in requests:
            q.put(req)

        q.put(None)

        # wait for finish
        for t in threads:
            t.join()

        end = time.time()

        return end - start


def main(dataset: str,
         model_path: str,
         concurrency: int = 1,
121
122
         num_prompts: int = 1000,
         tp: int = 1):
123

124
    engine = Engine(model_path, tp=tp)
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    tokenizer = engine.tokenizer

    requests = sample_requests(dataset, num_prompts, tokenizer)

    elapsed_time = engine.process_request(requests, concurrency)
    total_num_tokens = sum(prompt_len + output_len
                           for _, prompt_len, output_len in requests)
    total_num_out_tokens = sum(output_len for _, _, output_len in requests)
    print(f'Throughput requests: {len(requests) / elapsed_time:.2f} req/s')
    print(
        f'Throughput requests: {len(requests) * 60 / elapsed_time:.2f} req/min'
    )
    print(f'Throughput tokens: {total_num_tokens / elapsed_time:.2f} tokens/s')
    print('Throughput tokens(output only):'
          f'{total_num_out_tokens / elapsed_time:.2f} tokens/s')


if __name__ == '__main__':
    fire.Fire(main)