unittest_utils.h 6.22 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*
 * Copyright (c) 2022-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#pragma once

#include <algorithm>   // min, max
#include <assert.h>    // assert
#include <float.h>     // FLT_MAX
#include <iostream>    // snprintf
#include <math.h>      // expf, log
#include <limits>      // numeric_limits
#include <stdlib.h>    // rand
#include <string>      // string
#include <vector>      // vector

#include "src/fastertransformer/utils/cuda_utils.h"
#include "src/fastertransformer/utils/memory_utils.h"
#include "src/fastertransformer/utils/string_utils.h"

#define PRINT_LIMIT 16
#define EPSILON (1e-20)
#define EPSILON_FP16 (1e-10)

using namespace fastertransformer;

class TestFailureError : public std::exception {
private:
    std::string msg_;
public:
    explicit TestFailureError() = default;
    explicit TestFailureError(std::string name, std::string msg = "") {
        msg_ = fmtstr("TEST FAIL [%s] %s", name.c_str(), msg.c_str());
    }
    const char* what () const throw () {
        return msg_.c_str();
    }
};

#define EXPECT_TRUE(cond)                                  \
    do { if(!(cond)) {                                     \
        FT_LOG_ERROR("TEST FAIL [%s]: %s at %s:%d",        \
                     __func__, #cond, __FILE__, __LINE__); \
        throw TestFailureError(__func__);                  \
    } } while(false)

#define EXPECT_FALSE(cond)                                 \
    do { if(cond) {                                        \
        FT_LOG_ERROR("TEST FAIL [%s]: %s at %s:%d",        \
                     __func__, #cond, __FILE__, __LINE__); \
        throw TestFailureError(__func__);                  \
    } } while(false)

bool almostEqual(float a, float b, float atol = 1e-5, float rtol = 1e-8)
{
    // Params: a = value to compare and b = reference
    // This function follows implementation of numpy.isclose(), which checks
    //   abs(a - b) <= (atol + rtol * abs(b)).
    // Note that the inequality above is asymmetric where b is considered as
    // a reference value. To account into both absolute/relative errors, it
    // uses absolute tolerance and relative tolerance at the same time. The
    // default values of atol and rtol borrowed from numpy.isclose(). For the
    // case of nan value, the result will be true.
    if (isnan(a) && isnan(b)) {
        return true;
    }
    return fabs(a - b) <= (atol + rtol * fabs(b));
}

template<typename T>
bool checkResult(std::string name, T* out, T*ref, size_t size, float atol, float rtol) {
    size_t failures = 0;
    float relative_gap = 0.0f;;

    for (size_t i = 0; i < size; ++i) {
        // The values for the output and the reference.
        float a = (float)out[i];
        float b = (float)ref[i];

        bool ok = almostEqual(a, b, atol, rtol);
        // Print the error.
        if (!ok && failures < 4) {
            FT_LOG_ERROR(">> invalid result for i=%lu:", i);
            FT_LOG_ERROR(">>    found......: %10.6f", a);
            FT_LOG_ERROR(">>    expected...: %10.6f", b);
            FT_LOG_ERROR(">>    error......: %.6f", fabsf(a - b));
            FT_LOG_ERROR(">>    tol........: %.6f", atol + rtol * fabs(b));
        }
        // Update the number of failures.
        failures += ok ? 0 : 1;
        // Update the relative gap.
        relative_gap += fabsf(a - b) / (fabsf(b) + EPSILON);
    }

    relative_gap /= size;

    // Allow not matched up to 1% elements.
    size_t tol_failures = (size_t)(0.01 * size);
    FT_LOG_INFO("check...%6s : %-50s (failures: %.2f%% atol: %.2e rtol: %.2e rel_gap: %.2e%%)",
                failures <= tol_failures ? "....OK" : "FAILED", name.c_str(),
                100. * failures / size, atol, rtol, 100. * relative_gap);
    return failures <= tol_failures;
}

template<typename T>
bool checkResult(std::string name, T* out, T* ref, size_t size,
                 bool device_out = true, bool device_ref = false)
{
    bool is_fp32 = sizeof(T) == 4;
    float atol = is_fp32 ? 1e-4f : 1e-3f;
    float rtol = is_fp32 ? 1e-2f : 1e-1f;

    T* h_out = nullptr;
    if (device_out) {
        h_out = new T[size];
        cudaMemcpy(h_out, out, sizeof(T) * size, cudaMemcpyDeviceToHost);
        out = h_out;
    }
    T* h_ref = nullptr;
    if (device_ref) {
        h_ref = new T[size];
        cudaMemcpy(h_ref, ref, sizeof(T) * size, cudaMemcpyDeviceToHost);
        ref = h_ref;
    }
    bool is_ok = checkResult(name, out, ref, size, atol, rtol);
    if (h_out != nullptr){
        delete[] h_out;
    }
    if (h_ref != nullptr) {
        delete[] h_ref;
    }
    return is_ok;
}

template<typename T>
void initRandom(T* ptr, size_t size, float minval, float maxval) {
    for (size_t i = 0; i < size; ++i) {
        float val = static_cast<float>(rand()) / static_cast<float>(RAND_MAX);
        val *= (maxval - minval);
        ptr[i] = static_cast<T>(minval + val);
    }
}

void initRandomInt(int* ptr, size_t size, int minval, int maxval) {
    assert(minval < maxval);
    int mod = maxval - minval;
    for (size_t i = 0; i < size; ++i) {
        ptr[i] = minval + rand() % mod;
    }
}

template<typename T>
void tile(T* x, int m, int n) {
    for (int i = 1; i < m; ++i) {
        for (int j = 0; j < n; ++j) {
            x[i * n + j] = x[j];
        }
    }
}

template<typename T>
void tile(T* dst, T* src, int m, int n) {
    for (int i = 1; i < m; ++i) {
        for (int j = 0; j < n; ++j) {
            dst[i * n + j] = src[j];
        }
    }
}

#define HALF_FLT_MAX 65504.0f

template<typename T>
bool isHalf() {
    return std::is_same<T, half>::value;
}

template<typename T>
static inline void printMatrixWithLimit(T* ptr, int m, int k, int stride, bool is_device_ptr) {
    printMatrix(ptr, std::min(PRINT_LIMIT, m), std::min(PRINT_LIMIT, k), stride, is_device_ptr);
}