"README.md.origin" did not exist on "d48d95ab8a8b4d4d1dec10c8d6ed7abe90e3ac32"
BaseSamplingLayer.cc 17.4 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
/*
 * Copyright (c) 2019-2023, NVIDIA CORPORATION.  All rights reserved.
 * Copyright (c) 2021, NAVER Corp.  Authored by CLOVA.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "src/fastertransformer/layers/sampling_layers/BaseSamplingLayer.h"
#include "src/fastertransformer/kernels/sampling_penalty_kernels.h"
#include "src/fastertransformer/kernels/sampling_topk_kernels.h"
#include "src/fastertransformer/utils/cuda_utils.h"
#include "src/fastertransformer/utils/memory_utils.h"

#include <algorithm>

namespace fastertransformer {

template<typename T>
void BaseSamplingLayer<T>::allocateBuffer(size_t batch_size, Tensor top_k, Tensor top_p)
{
    FT_LOG_DEBUG(__PRETTY_FUNCTION__);
    curandstate_buf_ = reinterpret_cast<curandState_t*>(
        allocator_->reMalloc(curandstate_buf_, sizeof(curandState_t) * batch_size, false));
    random_seeds_buf_ = reinterpret_cast<unsigned long long*>(
        allocator_->reMalloc(random_seeds_buf_, sizeof(unsigned long long) * batch_size, false));
    temperature_buf_ =
        reinterpret_cast<float*>(allocator_->reMalloc(temperature_buf_, sizeof(float) * batch_size, false));
    repetition_penalty_buf_ =
        reinterpret_cast<float*>(allocator_->reMalloc(repetition_penalty_buf_, sizeof(float) * batch_size, false));
    min_lengths_buf_ = reinterpret_cast<int*>(allocator_->reMalloc(min_lengths_buf_, sizeof(int) * batch_size, false));
    runtime_logits_buf_ = reinterpret_cast<T*>(
        allocator_->reMalloc(runtime_logits_buf_, sizeof(T) * batch_size * vocab_size_padded_, false));
    skip_decode_buf_ =
        reinterpret_cast<bool*>(allocator_->reMalloc(skip_decode_buf_, sizeof(bool) * batch_size, false));

    // host buffers.
    temperature_        = new float[batch_size];
    repetition_penalty_ = new float[batch_size];
    min_lengths_        = new int[batch_size];
    skip_decode_        = new bool[batch_size];

    is_allocate_buffer_ = true;
}

template<typename T>
void BaseSamplingLayer<T>::freeBuffer()
{
    FT_LOG_DEBUG(__PRETTY_FUNCTION__);
    if (is_allocate_buffer_) {
        allocator_->free((void**)(&curandstate_buf_));
        allocator_->free((void**)(&random_seeds_buf_));
        allocator_->free((void**)(&temperature_buf_));
        allocator_->free((void**)(&repetition_penalty_buf_));
        allocator_->free((void**)(&min_lengths_buf_));
        allocator_->free((void**)(&runtime_logits_buf_));
        allocator_->free((void**)(&skip_decode_buf_));
        delete[] temperature_;
        delete[] repetition_penalty_;
        delete[] min_lengths_;
        delete[] skip_decode_;
        is_allocate_buffer_ = false;
    }
}

template<typename T>
BaseSamplingLayer<T>::BaseSamplingLayer(size_t             max_batch_size,
                                        size_t             vocab_size,
                                        size_t             vocab_size_padded,
                                        int                end_id,
                                        size_t             top_k,
                                        float              top_p,
                                        unsigned long long random_seed,
                                        float              temperature,
                                        float              len_penalty,
                                        float              repetition_penalty,
                                        cudaStream_t       stream,
                                        cublasMMWrapper*   cublas_wrapper,
                                        IAllocator*        allocator,
                                        bool               is_free_buffer_after_forward,
                                        cudaDeviceProp*    cuda_device_prop):
    DynamicDecodeBaseLayer(stream, cublas_wrapper, allocator, is_free_buffer_after_forward, cuda_device_prop),
    vocab_size_(vocab_size),
    vocab_size_padded_(vocab_size_padded)
{
}

template<typename T>
BaseSamplingLayer<T>::BaseSamplingLayer(BaseSamplingLayer const& sampling_layer):
    DynamicDecodeBaseLayer(sampling_layer),
    vocab_size_(sampling_layer.vocab_size_),
    vocab_size_padded_(sampling_layer.vocab_size_padded_),
    sampling_workspace_size_(sampling_layer.sampling_workspace_size_)
{
}

template<typename T>
BaseSamplingLayer<T>::~BaseSamplingLayer()
{
}

template<typename T>
void BaseSamplingLayer<T>::setup(const size_t batch_size, const size_t beam_width, TensorMap* runtime_args)
{
    // Set up the sampling layer for given runtime arguments.
    //
    // runtime_args:
    //     runtime_top_k [1] or [batch_size] on cpu, optional.
    //     runtime_top_p [1] or [batch_size] on cpu, optional
    //     temperature [1] or [batch_size] on cpu, optional
    //     repetition_penalty [1] or [batch_size] on cpu, optional
    //     presence_penalty [1] or [batch_size] on cpu, optional,
    //         repetition_penalty and presence_penalty are mutually exclusive.
    //     min_length [1] or [batch_size] on cpu, optional

    FT_LOG_DEBUG(__PRETTY_FUNCTION__);
    Tensor runtime_top_k = runtime_args->isExist("runtime_top_k") ? runtime_args->at("runtime_top_k") : Tensor();
    Tensor runtime_top_p = runtime_args->isExist("runtime_top_p") ? runtime_args->at("runtime_top_p") : Tensor();
    allocateBuffer(batch_size, runtime_top_k, runtime_top_p);

    // If runtime argument has single random seed, using this random seed to initialize the random table of all
    // sentences. If the argument has [batch_size] random seeds, initializing the random table by different random seeds
    // respectively. If no random seed, initialize the random table of all sentences by 0 directly.
    if (runtime_args->isExist("random_seed")) {
        Tensor random_seeds = runtime_args->at("random_seed");
        FT_CHECK_WITH_INFO(random_seeds.shape.size() == 1
                               && (random_seeds.size() == 1 || random_seeds.size() == batch_size),
                           fmtstr("random_seeds must be of shape [1] or [batch_size(%ld)], got random_seeds.shape=%s",
                                  batch_size,
                                  vec2str(random_seeds.shape).c_str()));
        if (random_seeds.size() == 1) {
            invokeCurandInitialize(curandstate_buf_, batch_size, random_seeds.getVal<unsigned long long>(), stream_);
            sync_check_cuda_error();
        }
        else {
            unsigned long long* random_seed_ptr = random_seeds.getPtr<unsigned long long>();
            cudaAutoCpy(random_seeds_buf_, random_seed_ptr, batch_size, stream_);
            invokeCurandBatchInitialize(curandstate_buf_, batch_size, random_seeds_buf_, stream_);
            sync_check_cuda_error();
        }
    }
    else {
        // Initialize curand states using the default seed 0.
        invokeCurandInitialize(curandstate_buf_, batch_size, 0, stream_);
    }

    // Setup penalties.
    const float default_temperature = 1.0f;
    Tensor      temperature         = runtime_args->isExist("temperature") ?
                                          runtime_args->at("temperature") :
                                          Tensor(MEMORY_CPU, TYPE_FP32, {1}, &default_temperature);
    if (temperature.size() == 1) {
        float tp = temperature.getVal<float>();
        deviceFill(temperature_buf_, batch_size, tp, stream_);
        std::fill_n(temperature_, batch_size, tp);
    }
    else {
        cudaAutoCpy(temperature_buf_, temperature.getPtr<float>(), batch_size, stream_);
        std::copy_n(temperature.getPtr<float>(), batch_size, temperature_);
    }

    if (runtime_args->isExist("repetition_penalty") || runtime_args->isExist("presence_penalty")) {
        FT_CHECK_WITH_INFO(
            !(runtime_args->isExist("repetition_penalty") && runtime_args->isExist("presence_penalty")),
            "Found ambiguous parameters repetition_penalty and presence_penalty which are mutually exclusive. "
            "Please provide one of repetition_penalty or presence_penalty.");
        repetition_penalty_type_ = runtime_args->isExist("repetition_penalty") ? RepetitionPenaltyType::Multiplicative :
                                                                                 RepetitionPenaltyType::Additive;
        Tensor repetition_penalty = repetition_penalty_type_ == RepetitionPenaltyType::Multiplicative ?
                                        runtime_args->at("repetition_penalty") :
                                        runtime_args->at("presence_penalty");
        if (repetition_penalty.size() == 1) {
            float rp = repetition_penalty.getVal<float>();
            deviceFill(repetition_penalty_buf_, batch_size, rp, stream_);
            std::fill_n(repetition_penalty_, batch_size, rp);
        }
        else {
            cudaAutoCpy(repetition_penalty_buf_, repetition_penalty.getPtr<float>(), batch_size, stream_);
            std::copy_n(repetition_penalty.getPtr<float>(), batch_size, repetition_penalty_);
        }
    }
    else {
        repetition_penalty_type_ = RepetitionPenaltyType::None;
    }

    const int default_min_length = 0;
    Tensor    min_lengths = runtime_args->at("min_length", Tensor(MEMORY_CPU, TYPE_INT32, {1}, &default_min_length));
    if (min_lengths.size() == 1) {
        int minlen = min_lengths.getVal<int>();
        deviceFill(min_lengths_buf_, batch_size, minlen, stream_);
        std::fill_n(min_lengths_, batch_size, minlen);
    }
    else {
        cudaAutoCpy(min_lengths_buf_, min_lengths.getPtr<int>(), batch_size, stream_);
        std::copy_n(min_lengths.getPtr<int>(), batch_size, min_lengths_);
    }
}

template<typename T>
void BaseSamplingLayer<T>::forward(std::vector<Tensor>* output_tensors, const std::vector<Tensor>* input_tensors)
{
    // input_tensors:
    //      logits [local_batch_size, vocab_size_padded]
    //      embedding_bias [vocab_size_padded]
    //      step [1] on cpu
    //      max_input_length [1] on cpu
    //      input_lengths [local_batch_size]
    //      ite [1] on cpu
    //      random_seed [1] on cpu, optional

    // output_tensors:
    //      output_ids [max_seq_len, batch_size]
    //      finished [local_batch_size]
    //      sequence_length [local_batch_size]
    //      cum_log_probs [local_batch_size], must be float*

    FT_CHECK(false);  // TODO deprecated, need to remove
    std::unordered_map<std::string, Tensor> input_tensors_map{{"logits", input_tensors->at(0)},
                                                              {"embedding_bias", input_tensors->at(1)},
                                                              {"step", input_tensors->at(2)},
                                                              {"max_input_length", input_tensors->at(3)},
                                                              {"input_lengths", input_tensors->at(4)},
                                                              {"ite", input_tensors->at(5)}};
    if (input_tensors->size() == 7) {
        input_tensors_map.insert({"random_seed", input_tensors->at(6)});
    }

    std::unordered_map<std::string, Tensor> output_tensors_map{{"output_ids", output_tensors->at(0)},
                                                               {"finished", output_tensors->at(1)},
                                                               {"sequence_length", output_tensors->at(2)},
                                                               {"cum_log_probs", output_tensors->at(3)}};
    forward(&output_tensors_map, &input_tensors_map);
}

template<typename T>
void BaseSamplingLayer<T>::forward(std::unordered_map<std::string, Tensor>*       output_tensors,
                                   const std::unordered_map<std::string, Tensor>* input_tensors)
{
    FT_LOG_DEBUG("%s", __PRETTY_FUNCTION__);
    TensorMap input_map(*input_tensors);
    TensorMap output_map(*output_tensors);
    forward(&output_map, &input_map);
}

template<typename T>
void BaseSamplingLayer<T>::forward(TensorMap* output_tensors, TensorMap* input_tensors)
{
    // input_tensors:
    //      logits [local_batch_size, vocab_size_padded]
    //      embedding_bias [vocab_size_padded], optional
    //      step [1] on cpu
    //      max_input_length [1] on cpu
    //      input_lengths [local_batch_size], optional
    //      ite [1] on cpu
    //      end_id [local_batch_size], optional

    // output_tensors:
    //      output_ids [max_seq_len, batch_size]
    //      finished [local_batch_size], optional
    //      sequence_length [local_batch_size], optional
    //      cum_log_probs [batch_size], must be float*, optional
    //          The cumultative log probability of generated tokens.
    //      output_log_probs [local_batch_size], must be float*, optional
    //          The log probs at the current step.

    FT_LOG_DEBUG("%s start", __PRETTY_FUNCTION__);
    FT_CHECK(input_tensors->size() >= 4);
    FT_CHECK(output_tensors->size() >= 1);
    const int batch_size       = output_tensors->at("output_ids").shape[1];
    const int local_batch_size = input_tensors->at("logits").shape[0];
    const int step             = input_tensors->at("step").getVal<int>();
    const int ite              = input_tensors->at("ite").getVal<int>();
    const int max_input_length = input_tensors->at("max_input_length").getVal<int>();
    T*        logits           = input_tensors->at("logits").getPtr<T>();

#define ALL_OF(p_, sz_, dt_, v_) (std::all_of(p_, p_ + sz_, [&](dt_ b) { return b == v_; }))

    bool* skip_decode = skip_decode_ + ite * local_batch_size;
    if (ALL_OF(skip_decode, local_batch_size, bool, true)) {
        // No sample in the current batch to do TopX sampling.
        return;
    }
    skip_any_ = std::any_of(skip_decode, skip_decode + local_batch_size, [](bool b) { return b; });
    if (skip_any_) {
        // A TopX Sampling layer directly changes the logit values. In case of skip_any==true,
        // meaning topk and topp layers will run simultaneously for a batch in the same step.
        // We copy the logits to an internal buffer, not affecting the other sampling layers.
        FT_CHECK(input_tensors->at("logits").size() == local_batch_size * vocab_size_padded_);
        cudaD2Dcpy(runtime_logits_buf_, logits, input_tensors->at("logits").size());
        logits = runtime_logits_buf_;
    }

    const T* embedding_bias =
        input_tensors->isExist("embedding_bias") ? input_tensors->at("embedding_bias").getPtr<T>() : nullptr;
    if (embedding_bias != nullptr || !ALL_OF(temperature_ + ite * local_batch_size, local_batch_size, float, 1.0f)) {
        invokeBatchApplyTemperaturePenalty(logits,
                                           embedding_bias,
                                           temperature_buf_ + ite * local_batch_size,
                                           local_batch_size,
                                           vocab_size_,
                                           vocab_size_padded_,
                                           stream_);
    }
    sync_check_cuda_error();

    if (step > 1 && repetition_penalty_type_ != RepetitionPenaltyType::None) {
        float default_value = getDefaultPenaltyValue(repetition_penalty_type_);
        if (!ALL_OF(repetition_penalty_ + ite * local_batch_size, local_batch_size, float, default_value)) {
            invokeBatchApplyRepetitionPenalty(
                logits,
                repetition_penalty_buf_ + ite * local_batch_size,
                output_tensors->at("output_ids").getPtrWithOffset<int>(ite * local_batch_size),
                batch_size,
                local_batch_size,
                vocab_size_padded_,
                input_tensors->at("input_lengths", Tensor{MEMORY_GPU, TYPE_INT32, {}, nullptr}).getPtr<int>(),
                max_input_length,
                step,
                repetition_penalty_type_,
                stream_);
            sync_check_cuda_error();
        }
    }

    const int  num_generated_tokens      = step - max_input_length;
    const int* min_lengths               = min_lengths_ + ite * local_batch_size;
    const bool invoke_min_length_penalty = std::any_of(
        min_lengths, min_lengths + local_batch_size, [&](int min_length) { return min_length > num_generated_tokens; });
    if (invoke_min_length_penalty) {
        FT_CHECK_WITH_INFO(input_tensors->isExist("end_id"), "Need end_id to apply min length penlaty");
        invokeMinLengthPenalty(logits,
                               min_lengths_buf_ + ite * local_batch_size,
                               input_tensors->getPtr<const int>("end_id"),
                               output_tensors->getPtr<const int>("sequence_length"),
                               max_input_length,
                               local_batch_size,
                               vocab_size_padded_,
                               stream_);
        sync_check_cuda_error();
    }
#undef ALL_OF

    runSampling(output_tensors, input_tensors);

    if (is_free_buffer_after_forward_) {
        freeBuffer();
    }
    sync_check_cuda_error();
    FT_LOG_DEBUG("%s stop", __PRETTY_FUNCTION__);
}

template class BaseSamplingLayer<float>;
template class BaseSamplingLayer<half>;

}  // namespace fastertransformer