test_sampling_layer.cu 43.6 KB
Newer Older
Chen Xin's avatar
Chen Xin committed
1
2
3
4
5
6
#include <algorithm>  // std::min, std::max
#include <iostream>   // snprintf
#include <math.h>     // expf, log
#include <stdlib.h>   // rand
#include <string>     // std::string
#include <vector>     // std::vector
Li Zhang's avatar
Li Zhang committed
7
8

#include <cublasLt.h>
Chen Xin's avatar
Chen Xin committed
9
#include <cublas_v2.h>
Li Zhang's avatar
Li Zhang committed
10
11
#include <cuda_runtime.h>

lvhan028's avatar
lvhan028 committed
12
13
14
#include "src/turbomind/kernels/sampling_topk_kernels.h"
#include "src/turbomind/layers/DynamicDecodeLayer.h"
#include "src/turbomind/layers/sampling_layers/TopKSamplingLayer.h"
Chen Xin's avatar
Chen Xin committed
15
16
#include "src/turbomind/macro.h"
#include "src/turbomind/utils/Tensor.h"
lvhan028's avatar
lvhan028 committed
17
18
19
#include "src/turbomind/utils/cublasMMWrapper.h"
#include "src/turbomind/utils/cuda_utils.h"
#include "src/turbomind/utils/memory_utils.h"
Li Zhang's avatar
Li Zhang committed
20

21
#include "gtest_utils.h"
Li Zhang's avatar
Li Zhang committed
22

lvhan028's avatar
lvhan028 committed
23
using namespace turbomind;
Li Zhang's avatar
Li Zhang committed
24
25
26
27
28
29

struct SamplingLayerTestParam {
    size_t batch_size;
    size_t vocab_size;
    size_t beam_width;
    size_t top_k;
Chen Xin's avatar
Chen Xin committed
30
    float  top_p;
Li Zhang's avatar
Li Zhang committed
31
32
    size_t output_len;

Chen Xin's avatar
Chen Xin committed
33
34
    std::string toString()
    {
Li Zhang's avatar
Li Zhang committed
35
        return fmtstr("SamplingLayerTestParam[batch=%ld, vocab=%ld, beam=%ld, k=%ld, p=%3.1f, output_len=%ld]",
Chen Xin's avatar
Chen Xin committed
36
37
38
39
40
41
                      batch_size,
                      vocab_size,
                      beam_width,
                      top_k,
                      top_p,
                      output_len);
Li Zhang's avatar
Li Zhang committed
42
43
44
45
    }
};

template<typename T>
Chen Xin's avatar
Chen Xin committed
46
47
void computeProb(T* probs, T* logits, int batch_size, int vocab_size)
{
Li Zhang's avatar
Li Zhang committed
48
49
50
51
52
53
54
55
56
    // Compute the log probability from logits.
    //   logits = batch_size x vocab_size vector.
    //   logprobs = log(softmax(logits)) (softmax along with vocab dimension)
    for (int bidx = 0; bidx < batch_size; ++bidx) {
        float sum = 0.0f;
        for (int i = 0; i < vocab_size; ++i) {
            sum += expf((float)logits[bidx * vocab_size + i]);
        }
        for (int i = 0; i < vocab_size; ++i) {
Chen Xin's avatar
Chen Xin committed
57
            int idx    = bidx * vocab_size + i;
Li Zhang's avatar
Li Zhang committed
58
59
60
61
62
63
            probs[idx] = static_cast<T>(expf((float)logits[idx]) / (sum + EPSILON));
        }
    }
}

template<typename T>
Chen Xin's avatar
Chen Xin committed
64
65
void computeLogProb(T* logprobs, T* logits, int batch_size, int vocab_size)
{
Li Zhang's avatar
Li Zhang committed
66
67
68
69
70
71
72
73
74
    // Compute the log probability from logits.
    //   logits = batch_size x vocab_size vector.
    //   logprobs = log(softmax(logits)) (softmax along with vocab dimension)
    for (int bidx = 0; bidx < batch_size; ++bidx) {
        float sum = 0.0f;
        for (int i = 0; i < vocab_size; ++i) {
            sum += expf(logits[bidx * vocab_size + i]);
        }
        for (int i = 0; i < vocab_size; ++i) {
Chen Xin's avatar
Chen Xin committed
75
            int idx       = bidx * vocab_size + i;
Li Zhang's avatar
Li Zhang committed
76
77
78
79
80
81
82
83
            logprobs[idx] = static_cast<T>(logf(expf(logits[idx]) / (sum + EPSILON) + EPSILON));
        }
    }
}

template<typename T>
class SamplingDecodeTest: public testing::Test {
protected:
Chen Xin's avatar
Chen Xin committed
84
85
86
87
88
89
90
91
92
93
94
    unsigned long long              seed           = 0;
    const static unsigned long long max_seed       = 30;
    const size_t                    batch_size     = 6;
    const size_t                    beam_width     = 1;
    const size_t                    batchxbeam     = batch_size * beam_width;
    const size_t                    vocab_size     = 8;
    const size_t                    max_input_len  = 0;  // has no effect.
    const size_t                    max_output_len = 3;
    const size_t                    max_seq_len    = max_input_len + max_output_len;
    const int                       end_id         = vocab_size - 1;
    const DataType                  data_type      = getTensorType<T>();
Li Zhang's avatar
Li Zhang committed
95
96
97
98

    // vocab size 8 & length 3
    T* test_input_logits;

Chen Xin's avatar
Chen Xin committed
99
    cudaStream_t                            stream;
Li Zhang's avatar
Li Zhang committed
100
    ft::Allocator<ft::AllocatorType::CUDA>* allocator;
Chen Xin's avatar
Chen Xin committed
101
102
103
104
105
106
107
108
109
110
    cublasHandle_t                          cublas_handle;
    cublasLtHandle_t                        cublaslt_handle;
    std::mutex*                             cublas_wrapper_mutex;
    cublasMMWrapper*                        cublas_wrapper;
    DynamicDecodeLayer<T>*                  dynamic_decode_layer;

    int*   h_output_ids;
    T*     h_logits;
    T*     h_probs;
    T*     h_log_probs;
Li Zhang's avatar
Li Zhang committed
111
112
113
    float* h_cum_log_probs;
    float* h_output_log_probs;

Chen Xin's avatar
Chen Xin committed
114
115
    T*     d_logits;
    int*   d_input_lengths;
Li Zhang's avatar
Li Zhang committed
116
117
    float* d_cum_log_probs;
    float* d_output_log_probs;
Chen Xin's avatar
Chen Xin committed
118
119
    int*   d_output_ids;
    int*   d_end_ids;
Li Zhang's avatar
Li Zhang committed
120

Chen Xin's avatar
Chen Xin committed
121
122
    void setup(unsigned long long seed = 0)
    {
Li Zhang's avatar
Li Zhang committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        this->seed = seed;

        check_cuda_error(cudaStreamCreate(&stream));
        allocator = new Allocator<AllocatorType::CUDA>(getDevice());
        allocator->setStream(stream);

        struct cudaDeviceProp prop;
        check_cuda_error(cudaGetDeviceProperties(&prop, 0));
        check_cuda_error(cublasCreate(&cublas_handle));
        check_cuda_error(cublasLtCreate(&cublaslt_handle));
        check_cuda_error(cublasSetStream(cublas_handle, stream));
        cublasAlgoMap cublas_algo_map(GEMM_CONFIG);
        cublas_wrapper_mutex = new std::mutex();

Chen Xin's avatar
Chen Xin committed
137
138
        cublas_wrapper = new cublasMMWrapper(
            cublas_handle, cublaslt_handle, stream, &cublas_algo_map, cublas_wrapper_mutex, allocator);
Li Zhang's avatar
Li Zhang committed
139
140
141
142
143
144
145
146
147
148

        dynamic_decode_layer = new DynamicDecodeLayer<T>(vocab_size,
                                                         vocab_size,
                                                         end_id,
                                                         stream,
                                                         cublas_wrapper,
                                                         allocator,
                                                         false,   // is_free_buffer_after_forward
                                                         &prop);  // cuda_device_prop

Chen Xin's avatar
Chen Xin committed
149
150
151
152
153
        h_output_ids       = new int[batchxbeam];
        h_logits           = new T[batchxbeam * vocab_size];
        h_probs            = new T[batchxbeam * vocab_size];
        h_log_probs        = new T[batchxbeam * vocab_size];
        h_cum_log_probs    = new float[batchxbeam];
Li Zhang's avatar
Li Zhang committed
154
155
156
157
        h_output_log_probs = new float[max_output_len * batchxbeam];

        // prob = (0.4, 0.3, 0.2, 0.1, ...)
        test_input_logits = new T[24]{
Chen Xin's avatar
Chen Xin committed
158
159
160
            -0.9163,  -1.2040,  -1.6094,  -2.3026,  -FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX,  // step 0
            -FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX, -0.9163,  -1.2040,  -1.6094,  -2.3026,   // step 1
            -FLT_MAX, -FLT_MAX, -0.9163,  -1.2040,  -1.6094,  -2.3026,  -FLT_MAX, -FLT_MAX   // step 2
Li Zhang's avatar
Li Zhang committed
161
162
        };

Chen Xin's avatar
Chen Xin committed
163
164
165
        d_logits           = reinterpret_cast<T*>(allocator->malloc(sizeof(T) * batchxbeam * vocab_size, true));
        d_input_lengths    = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * batchxbeam));
        d_cum_log_probs    = reinterpret_cast<float*>(allocator->malloc(sizeof(float) * batchxbeam));
Li Zhang's avatar
Li Zhang committed
166
        d_output_log_probs = reinterpret_cast<float*>(allocator->malloc(sizeof(float) * max_output_len * batchxbeam));
Chen Xin's avatar
Chen Xin committed
167
168
        d_output_ids       = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * max_seq_len * batchxbeam));
        d_end_ids          = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * batchxbeam));
Li Zhang's avatar
Li Zhang committed
169
170
171
172
173
174
175
176

        // Init by zero.
        cudaMemset(d_cum_log_probs, 0, sizeof(float) * batchxbeam);
        cudaMemset(d_output_log_probs, 0, sizeof(float) * max_output_len * batchxbeam);
        cudaMemset(d_output_ids, 0, sizeof(int) * max_seq_len * batchxbeam);
        deviceFill(d_end_ids, batchxbeam, end_id, stream);
    }

Chen Xin's avatar
Chen Xin committed
177
178
    void teardown()
    {
Li Zhang's avatar
Li Zhang committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
        delete[] test_input_logits;
        delete[] h_output_ids;
        delete[] h_logits;
        delete[] h_probs;
        delete[] h_log_probs;
        delete[] h_cum_log_probs;
        delete[] h_output_log_probs;
        delete dynamic_decode_layer;
        delete cublas_wrapper;
        delete cublas_wrapper_mutex;
        delete allocator;
        check_cuda_error(cublasDestroy(cublas_handle));
        check_cuda_error(cublasLtDestroy(cublaslt_handle));
        check_cuda_error(cudaStreamDestroy(stream));
    }

Chen Xin's avatar
Chen Xin committed
195
196
    TensorMap* createInputTensors(
        int* topk, size_t topk_size, float* topp, size_t topp_size, float* temperature, float* repetition_penalty)
Li Zhang's avatar
Li Zhang committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    {
        // construct common input tensors
        TensorMap* input_tensors = new TensorMap();
        if (topk != nullptr) {
            input_tensors->insert({"runtime_top_k", {MEMORY_CPU, TYPE_INT32, {topk_size}, topk}});
        }
        if (topp != nullptr) {
            input_tensors->insert({"runtime_top_p", {MEMORY_CPU, TYPE_FP32, {topp_size}, topp}});
        }
        if (temperature != nullptr) {
            input_tensors->insert({"temperature", Tensor{MEMORY_CPU, TYPE_FP32, {1}, temperature}});
        }
        if (repetition_penalty != nullptr) {
            input_tensors->insert({"repetition_penalty", Tensor{MEMORY_CPU, TYPE_FP32, {1}, repetition_penalty}});
        }
Chen Xin's avatar
Chen Xin committed
212
213
        input_tensors->insert(
            {"logits", Tensor{MEMORY_GPU, TYPE_FP32, {batch_size, beam_width, vocab_size}, d_logits}});
Li Zhang's avatar
Li Zhang committed
214
215
        input_tensors->insert({"embedding_bias", Tensor{MEMORY_GPU, data_type, {vocab_size}, nullptr}});
        input_tensors->insert({"max_input_length", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &max_input_len}});
Chen Xin's avatar
Chen Xin committed
216
217
        input_tensors->insert(
            {"input_lengths", Tensor{MEMORY_GPU, TYPE_INT32, {batch_size, beam_width}, d_input_lengths}});
Li Zhang's avatar
Li Zhang committed
218
219
220
221
222
        input_tensors->insert({"end_id", Tensor{MEMORY_CPU, TYPE_INT32, {batchxbeam}, &d_end_ids}});
        input_tensors->insert({"random_seed", Tensor{MEMORY_CPU, TYPE_UINT64, {1}, &seed}});
        return input_tensors;
    }

Chen Xin's avatar
Chen Xin committed
223
224
    TensorMap* createOutputTensors()
    {
Li Zhang's avatar
Li Zhang committed
225
226
227
228
229
230
231
232
233
        // construct common output tensors
        TensorMap* output_tensors = new TensorMap();
        output_tensors->insert(
            {"output_ids", Tensor{MEMORY_GPU, TYPE_INT32, {max_seq_len, batch_size, beam_width}, d_output_ids}});
        output_tensors->insert({"finished", Tensor{MEMORY_GPU, TYPE_BOOL, {batch_size * beam_width}, nullptr}});
        output_tensors->insert(
            {"cum_log_probs", Tensor{MEMORY_GPU, TYPE_FP32, {batch_size * beam_width}, d_cum_log_probs}});
        output_tensors->insert(
            {"output_log_probs",
Chen Xin's avatar
Chen Xin committed
234
235
             Tensor{MEMORY_GPU, TYPE_FP32, {max_seq_len, batch_size, beam_width}, d_output_log_probs}});
        output_tensors->insert({"sequence_length", Tensor{MEMORY_GPU, TYPE_INT32, {batch_size * beam_width}, nullptr}});
Li Zhang's avatar
Li Zhang committed
236
237
238
        return output_tensors;
    }

Chen Xin's avatar
Chen Xin committed
239
240
    void batchH2Dcpy(T* dst, T* src, size_t m, size_t n)
    {
Li Zhang's avatar
Li Zhang committed
241
242
243
244
245
        for (size_t i = 0; i < m; ++i) {
            cudaH2Dcpy(dst + i * n, src, n);
        }
    }

Chen Xin's avatar
Chen Xin committed
246
247
    bool checkResult(int* d_output_ids, std::vector<std::set<int>>& expected_ids)
    {
Li Zhang's avatar
Li Zhang committed
248
249
250
251
252
        assert(expected_ids.size() == max_seq_len * batchxbeam);
        int* h_output_ids = new int[max_seq_len * batchxbeam];
        cudaD2Hcpy(h_output_ids, d_output_ids, max_seq_len * batchxbeam);
        int failures = 0;
        for (size_t i = 0; i < max_seq_len * batchxbeam; ++i) {
Chen Xin's avatar
Chen Xin committed
253
254
            size_t        s     = i / batchxbeam;
            size_t        b     = i % batchxbeam;
Li Zhang's avatar
Li Zhang committed
255
256
257
258
259
260
261
262
263
264
            std::set<int> expts = expected_ids.at(i);
            if (expts.count(h_output_ids[i]) == 0) {
                if (failures < 10) {
                    std::stringstream ss;
                    ss << " - Fail "
                       << " (step=" << s << ", batch=" << b << ") "
                       << "actual=" << h_output_ids[i] << ", expected";
                    for (auto& expt : expts) {
                        ss << " " << expt;
                    }
lvhan028's avatar
lvhan028 committed
265
                    TM_LOG_DEBUG("%s", ss.str().c_str());
Li Zhang's avatar
Li Zhang committed
266
267
268
269
                }
                ++failures;
            }
        }
Chen Xin's avatar
Chen Xin committed
270
271
        TM_LOG_DEBUG(
            "check...%6s : failures: %d / %d", failures == 0 ? "....OK" : "FAILED", failures, max_seq_len * batchxbeam);
Li Zhang's avatar
Li Zhang committed
272
273
274
275
276
277
        delete[] h_output_ids;
        return failures == 0;
    }

public:
    void runTest(std::vector<std::set<int>> expected_output_ids,
Chen Xin's avatar
Chen Xin committed
278
279
280
281
282
283
284
                 int*                       top_ks,
                 size_t                     top_k_size,
                 float*                     top_ps,
                 size_t                     top_p_size,
                 float*                     temperature,
                 float*                     repetition_penalty,
                 bool                       use_local_batch = false)
Li Zhang's avatar
Li Zhang committed
285
286
    {
        size_t local_batch_size = use_local_batch ? batch_size / 3 : batch_size;
Chen Xin's avatar
Chen Xin committed
287
        uint   ite              = use_local_batch ? 1 : 0;
Li Zhang's avatar
Li Zhang committed
288
289
        for (unsigned long long seed = 0; seed < max_seed; ++seed) {
            this->setup(seed);
Chen Xin's avatar
Chen Xin committed
290
291
292
            size_t     step = max_input_len;
            TensorMap* input_tensors =
                createInputTensors(top_ks, top_k_size, top_ps, top_p_size, temperature, repetition_penalty);
Li Zhang's avatar
Li Zhang committed
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
            input_tensors->insert({"step", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &step}});
            input_tensors->insert({"ite", Tensor{MEMORY_CPU, TYPE_UINT32, {1}, &ite}});
            input_tensors->insert({"local_batch_size", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &local_batch_size}});
            TensorMap* output_tensors = createOutputTensors();

            dynamic_decode_layer->setup(batch_size, beam_width, input_tensors);
            for (step = max_input_len; step < max_output_len; ++step) {
                // Reset by the test value since the sampling layer internally update the logit buffer.
                batchH2Dcpy(input_tensors->at("logits").getPtr<T>(),
                            test_input_logits + step * vocab_size,
                            batchxbeam,
                            vocab_size);
                dynamic_decode_layer->forward(output_tensors, input_tensors);
            }
            bool passed = checkResult(d_output_ids, expected_output_ids);
            EXPECT_TRUE(passed) << "Failed at seed " << seed;
#ifndef NDEBUG
            if (!passed) {
lvhan028's avatar
lvhan028 committed
311
                TM_LOG_ERROR("actual output ids");
Li Zhang's avatar
Li Zhang committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
                printMatrix(d_output_ids, max_seq_len, batch_size, batch_size, true);
            }
#endif
            delete output_tensors;
            delete input_tensors;
            this->teardown();
        }
    }
};

TYPED_TEST_SUITE(SamplingDecodeTest, FloatAndHalfTypes);

TYPED_TEST(SamplingDecodeTest, TopK)
{
Chen Xin's avatar
Chen Xin committed
326
327
    int                        top_k = 2;
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
328
329
        // batch
        //  0       1       2       3       4       5
Chen Xin's avatar
Chen Xin committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
        {0, 1},
        {0, 1},
        {0, 1},
        {0, 1},
        {0, 1},
        {0, 1},  // step 0
        {4, 5},
        {4, 5},
        {4, 5},
        {4, 5},
        {4, 5},
        {4, 5},  // step 1
        {2, 3},
        {2, 3},
        {2, 3},
        {2, 3},
        {2, 3},
        {2, 3}  // step 2
Li Zhang's avatar
Li Zhang committed
348
349
350
351
352
353
    };
    this->runTest(expected_output_ids, &top_k, 1, nullptr, 0, nullptr, nullptr);
}

TYPED_TEST(SamplingDecodeTest, BatchTopK)
{
Chen Xin's avatar
Chen Xin committed
354
355
356
    size_t                     batch_size = this->batch_size;
    int*                       top_ks     = new int[batch_size]{2, 1, 1, 2, 1, 1};
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
357
358
        // batch
        //  0    1    2       3    4    5
Chen Xin's avatar
Chen Xin committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
        {0, 1},
        {0},
        {0},
        {0, 1},
        {0},
        {0},  // step 0
        {4, 5},
        {4},
        {4},
        {4, 5},
        {4},
        {4},  // step 1
        {2, 3},
        {2},
        {2},
        {2, 3},
        {2},
        {2}  // step 2
Li Zhang's avatar
Li Zhang committed
377
378
379
380
381
382
383
    };
    this->runTest(expected_output_ids, top_ks, batch_size, nullptr, 0, nullptr, nullptr);
    delete[] top_ks;
}

TYPED_TEST(SamplingDecodeTest, TopP)
{
Chen Xin's avatar
Chen Xin committed
384
385
    float                      top_p = 0.3;
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
386
        // batch
Chen Xin's avatar
Chen Xin committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        {0},
        {0},
        {0},
        {0},
        {0},
        {0},  // step 0
        {4},
        {4},
        {4},
        {4},
        {4},
        {4},  // step 1
        {2},
        {2},
        {2},
        {2},
        {2},
        {2}  // step 2
Li Zhang's avatar
Li Zhang committed
405
406
407
408
409
410
    };
    this->runTest(expected_output_ids, nullptr, 0, &top_p, 1, nullptr, nullptr);
}

TYPED_TEST(SamplingDecodeTest, BatchTopP)
{
Chen Xin's avatar
Chen Xin committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    size_t                     batch_size = this->batch_size;
    float*                     top_ps     = new float[batch_size]{0.3f, 0.5f, 0.5f, 0.3f, 0.5f, 0.5f};
    std::vector<std::set<int>> expected_output_ids{
        {0},
        {0, 1},
        {0, 1},
        {0},
        {0, 1},
        {0, 1},  // step 0
        {4},
        {4, 5},
        {4, 5},
        {4},
        {4, 5},
        {4, 5},  // step 1
        {2},
        {2, 3},
        {2, 3},
        {2},
        {2, 3},
        {2, 3}  // step 2
Li Zhang's avatar
Li Zhang committed
432
433
434
435
436
    };
    this->runTest(expected_output_ids, nullptr, 0, top_ps, batch_size, nullptr, nullptr);
    delete[] top_ps;
}

Chen Xin's avatar
Chen Xin committed
437
438
439
440
441
TYPED_TEST(SamplingDecodeTest, TopKTopP)
{
    int                        top_k = 2;
    float                      top_p = 0.3;
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
442
        // batch
Chen Xin's avatar
Chen Xin committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
        {0},
        {0},
        {0},
        {0},
        {0},
        {0},  // step 0
        {4},
        {4},
        {4},
        {4},
        {4},
        {4},  // step 1
        {2},
        {2},
        {2},
        {2},
        {2},
        {2}  // step 2
Li Zhang's avatar
Li Zhang committed
461
462
463
464
465
466
    };
    this->runTest(expected_output_ids, &top_k, 1, &top_p, 1, nullptr, nullptr);
}

TYPED_TEST(SamplingDecodeTest, BatchTopKTopP)
{
Chen Xin's avatar
Chen Xin committed
467
468
469
470
    size_t                     batch_size = this->batch_size;
    int*                       top_ks     = new int[batch_size]{2, 2, 1, 2, 2, 1};
    float                      top_p      = 0.3;
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
471
        // batch
Chen Xin's avatar
Chen Xin committed
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        {0},
        {0},
        {0},
        {0},
        {0},
        {0},  // step 0
        {4},
        {4},
        {4},
        {4},
        {4},
        {4},  // step 1
        {2},
        {2},
        {2},
        {2},
        {2},
        {2}  // step 2
Li Zhang's avatar
Li Zhang committed
490
491
492
493
494
495
496
    };
    this->runTest(expected_output_ids, top_ks, batch_size, &top_p, 1, nullptr, nullptr);
    delete[] top_ks;
}

TYPED_TEST(SamplingDecodeTest, TopKBatchTopP)
{
Chen Xin's avatar
Chen Xin committed
497
498
499
500
    size_t                     batch_size = this->batch_size;
    int                        top_k      = 2;
    float*                     top_ps     = new float[batch_size]{0.5, 0.3, 0.5, 0.5, 0.3, 0.5};
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
501
        // batch
Chen Xin's avatar
Chen Xin committed
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
        {0, 1},
        {0},
        {0, 1},
        {0, 1},
        {0},
        {0, 1},  // step 0
        {4, 5},
        {4},
        {4, 5},
        {4, 5},
        {4},
        {4, 5},  // step 1
        {2, 3},
        {2},
        {2, 3},
        {2, 3},
        {2},
        {2, 3}  // step 2
Li Zhang's avatar
Li Zhang committed
520
521
522
523
524
    };
    this->runTest(expected_output_ids, &top_k, 1, top_ps, batch_size, nullptr, nullptr);
    delete[] top_ps;
}

Chen Xin's avatar
Chen Xin committed
525
TYPED_TEST(SamplingDecodeTest, BatchTopKBatchTopP)
Li Zhang's avatar
Li Zhang committed
526
{
Chen Xin's avatar
Chen Xin committed
527
528
529
530
    size_t                     batch_size = this->batch_size;
    int*                       top_ks     = new int[batch_size]{2, 2, 0, 2, 2, 0};
    float*                     top_ps     = new float[batch_size]{0.0, 0.3, 0.5, 0.0, 0.3, 0.5};
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
531
        // batch
Chen Xin's avatar
Chen Xin committed
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
        {0, 1},
        {0},
        {0, 1},
        {0, 1},
        {0},
        {0, 1},  // step 0
        {4, 5},
        {4},
        {4, 5},
        {4, 5},
        {4},
        {4, 5},  // step 1
        {2, 3},
        {2},
        {2, 3},
        {2, 3},
        {2},
        {2, 3}  // step 2
Li Zhang's avatar
Li Zhang committed
550
551
552
553
554
555
556
557
    };
    this->runTest(expected_output_ids, top_ks, batch_size, top_ps, batch_size, nullptr, nullptr);
    delete[] top_ks;
    delete[] top_ps;
}

TYPED_TEST(SamplingDecodeTest, InvalidArgsZeroTopK)
{
Chen Xin's avatar
Chen Xin committed
558
559
560
    size_t                     batch_size = this->batch_size;
    int                        top_k      = 0;
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
561
        // batch
Chen Xin's avatar
Chen Xin committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
        {0},
        {0},
        {0},
        {0},
        {0},
        {0},  // step 0
        {4},
        {4},
        {4},
        {4},
        {4},
        {4},  // step 1
        {2},
        {2},
        {2},
        {2},
        {2},
        {2}  // step 2
Li Zhang's avatar
Li Zhang committed
580
581
582
583
584
585
    };
    this->runTest(expected_output_ids, &top_k, 1, nullptr, 0, nullptr, nullptr);
}

TYPED_TEST(SamplingDecodeTest, InvalidArgsZeroTopP)
{
Chen Xin's avatar
Chen Xin committed
586
587
588
    size_t                     batch_size = this->batch_size;
    float                      top_p      = 0;
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
589
        // batch
Chen Xin's avatar
Chen Xin committed
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
        {0},
        {0},
        {0},
        {0},
        {0},
        {0},  // step 0
        {4},
        {4},
        {4},
        {4},
        {4},
        {4},  // step 1
        {2},
        {2},
        {2},
        {2},
        {2},
        {2}  // step 2
Li Zhang's avatar
Li Zhang committed
608
609
610
611
612
613
    };
    this->runTest(expected_output_ids, nullptr, 0, &top_p, 1, nullptr, nullptr);
}

TYPED_TEST(SamplingDecodeTest, InvalidArgsZeroTopKTopP)
{
Chen Xin's avatar
Chen Xin committed
614
615
616
617
    size_t                     batch_size = this->batch_size;
    int                        top_k      = 0;
    float                      top_p      = 0;
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
618
        // batch
Chen Xin's avatar
Chen Xin committed
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
        {0},
        {0},
        {0},
        {0},
        {0},
        {0},  // step 0
        {4},
        {4},
        {4},
        {4},
        {4},
        {4},  // step 1
        {2},
        {2},
        {2},
        {2},
        {2},
        {2}  // step 2
Li Zhang's avatar
Li Zhang committed
637
638
639
640
    };
    this->runTest(expected_output_ids, &top_k, 1, &top_p, 1, nullptr, nullptr);
}

Chen Xin's avatar
Chen Xin committed
641
642
643
644
645
646
TYPED_TEST(SamplingDecodeTest, InvalidArgsZeroBatchTopKTopP)
{
    size_t                     batch_size = this->batch_size;
    int*                       top_ks     = new int[batch_size]{0, 0, 0, 0, 0, 0};
    float                      top_p      = 0;
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
647
        // batch
Chen Xin's avatar
Chen Xin committed
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
        {0},
        {0},
        {0},
        {0},
        {0},
        {0},  // step 0
        {4},
        {4},
        {4},
        {4},
        {4},
        {4},  // step 1
        {2},
        {2},
        {2},
        {2},
        {2},
        {2}  // step 2
Li Zhang's avatar
Li Zhang committed
666
667
668
669
670
    };
    this->runTest(expected_output_ids, top_ks, batch_size, &top_p, 1, nullptr, nullptr);
    delete[] top_ks;
}

Chen Xin's avatar
Chen Xin committed
671
672
673
674
675
676
TYPED_TEST(SamplingDecodeTest, InvalidArgsZeroTopKBatchTopP)
{
    size_t                     batch_size = this->batch_size;
    int                        top_k      = 0;
    float*                     top_ps     = new float[batch_size]{0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
677
        // batch
Chen Xin's avatar
Chen Xin committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
        {0},
        {0},
        {0},
        {0},
        {0},
        {0},  // step 0
        {4},
        {4},
        {4},
        {4},
        {4},
        {4},  // step 1
        {2},
        {2},
        {2},
        {2},
        {2},
        {2}  // step 2
Li Zhang's avatar
Li Zhang committed
696
697
698
699
700
    };
    this->runTest(expected_output_ids, &top_k, 1, top_ps, batch_size, nullptr, nullptr);
    delete[] top_ps;
}

Chen Xin's avatar
Chen Xin committed
701
702
703
704
705
TYPED_TEST(SamplingDecodeTest, InvalidArgsBatchTopKContainZero)
{
    size_t                     batch_size = this->batch_size;
    int*                       top_ks     = new int[batch_size]{2, 1, 0, 0, 2, 1};
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
706
        // batch
Chen Xin's avatar
Chen Xin committed
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
        {0, 1},
        {0},
        {0},
        {0},
        {0, 1},
        {0},  // step 0
        {4, 5},
        {4},
        {4},
        {4},
        {4, 5},
        {4},  // step 1
        {2, 3},
        {2},
        {2},
        {2},
        {2, 3},
        {2}  // step 2
Li Zhang's avatar
Li Zhang committed
725
726
727
728
729
    };
    this->runTest(expected_output_ids, top_ks, batch_size, nullptr, 0, nullptr, nullptr);
    delete[] top_ks;
}

Chen Xin's avatar
Chen Xin committed
730
731
732
733
734
TYPED_TEST(SamplingDecodeTest, InvalidArgsBatchTopPContainZero)
{
    size_t                     batch_size = this->batch_size;
    float*                     top_ps     = new float[batch_size]{0.5f, 0.5f, 0.0f, 0.5f, 0.0f, 0.3f};
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
735
        // batch
Chen Xin's avatar
Chen Xin committed
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
        {0, 1},
        {0, 1},
        {0},
        {0, 1},
        {0},
        {0},  // step 0
        {4, 5},
        {4, 5},
        {4},
        {4, 5},
        {4},
        {4},  // step 1
        {2, 3},
        {2, 3},
        {2},
        {2, 3},
        {2},
        {2}  // step 2
Li Zhang's avatar
Li Zhang committed
754
755
756
757
758
    };
    this->runTest(expected_output_ids, nullptr, 0, top_ps, batch_size, nullptr, nullptr);
    delete[] top_ps;
}

Chen Xin's avatar
Chen Xin committed
759
760
761
762
763
764
TYPED_TEST(SamplingDecodeTest, InvalidArgsBatchTopKTopPContainZero)
{
    size_t                     batch_size = this->batch_size;
    int*                       top_ks     = new int[batch_size]{2, 2, 1, 0, 2, 0};
    float                      top_p      = 0.0;
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
765
        // batch
Chen Xin's avatar
Chen Xin committed
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
        {0, 1},
        {0, 1},
        {0},
        {0},
        {0, 1},
        {0},  // step 0
        {4, 5},
        {4, 5},
        {4},
        {4},
        {4, 5},
        {4},  // step 1
        {2, 3},
        {2, 3},
        {2},
        {2},
        {2, 3},
        {2}  // step 2
Li Zhang's avatar
Li Zhang committed
784
785
786
787
788
    };
    this->runTest(expected_output_ids, top_ks, batch_size, &top_p, 1, nullptr, nullptr);
    delete[] top_ks;
}

Chen Xin's avatar
Chen Xin committed
789
790
791
792
793
794
TYPED_TEST(SamplingDecodeTest, InvalidArgsTopKBatchTopPContainZero)
{
    size_t                     batch_size = this->batch_size;
    int                        top_k      = 0;
    float*                     top_ps     = new float[batch_size]{0.0, 0.3, 0.5, 0.0, 0.3, 0.5};
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
795
        // batch
Chen Xin's avatar
Chen Xin committed
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
        {0},
        {0},
        {0, 1},
        {0},
        {0},
        {0, 1},  // step 0
        {4},
        {4},
        {4, 5},
        {4},
        {4},
        {4, 5},  // step 1
        {2},
        {2},
        {2, 3},
        {2},
        {2},
        {2, 3}  // step 2
Li Zhang's avatar
Li Zhang committed
814
815
816
817
818
    };
    this->runTest(expected_output_ids, &top_k, 1, top_ps, batch_size, nullptr, nullptr);
    delete[] top_ps;
}

Chen Xin's avatar
Chen Xin committed
819
820
821
822
823
824
TYPED_TEST(SamplingDecodeTest, InvalidArgsBatchTopKBatchTopPContainZero)
{
    size_t                     batch_size = this->batch_size;
    int*                       top_ks     = new int[batch_size]{0, 2, 1, 2, 2, 0};
    float*                     top_ps     = new float[batch_size]{0.0, 0.3, 0.9, 0.0, 0.3, 0.5};
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
825
        // batch
Chen Xin's avatar
Chen Xin committed
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
        {0},
        {0},
        {0},
        {0, 1},
        {0},
        {0, 1},  // step 0
        {4},
        {4},
        {4},
        {4, 5},
        {4},
        {4, 5},  // step 1
        {2},
        {2},
        {2},
        {2, 3},
        {2},
        {2, 3}  // step 2
Li Zhang's avatar
Li Zhang committed
844
845
846
847
848
849
    };
    this->runTest(expected_output_ids, top_ks, batch_size, top_ps, batch_size, nullptr, nullptr);
    delete[] top_ks;
    delete[] top_ps;
}

Chen Xin's avatar
Chen Xin committed
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
TYPED_TEST(SamplingDecodeTest, LocalBatchBatchTopP)
{
    size_t                     batch_size = this->batch_size;
    float*                     top_ps     = new float[batch_size]{0.3f, 0.5f, 0.5f, 0.3f, 0.5f, 0.5f};
    std::vector<std::set<int>> expected_output_ids{
        {0},
        {0},
        {0, 1},
        {0},
        {0},
        {0},  // step 0
        {0},
        {0},
        {4, 5},
        {4},
        {0},
        {0},  // step 1
        {0},
        {0},
        {2, 3},
        {2},
        {0},
        {0}  // step 2
Li Zhang's avatar
Li Zhang committed
873
874
875
876
877
    };
    this->runTest(expected_output_ids, nullptr, 0, top_ps, batch_size, nullptr, nullptr, true);
    delete[] top_ps;
}

Chen Xin's avatar
Chen Xin committed
878
879
880
881
882
883
TYPED_TEST(SamplingDecodeTest, LocalBatchBatchTopKBatchTopP)
{
    size_t                     batch_size = this->batch_size;
    int*                       top_ks     = new int[batch_size]{2, 2, 0, 2, 2, 0};
    float*                     top_ps     = new float[batch_size]{0.0, 0.3, 0.5, 0.0, 0.3, 0.5};
    std::vector<std::set<int>> expected_output_ids{
Li Zhang's avatar
Li Zhang committed
884
        // batch
Chen Xin's avatar
Chen Xin committed
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
        {0},
        {0},
        {0, 1},
        {0, 1},
        {0},
        {0},  // step 0
        {0},
        {0},
        {4, 5},
        {4, 5},
        {0},
        {0},  // step 1
        {0},
        {0},
        {2, 3},
        {2, 3},
        {0},
        {0}  // step 2
Li Zhang's avatar
Li Zhang committed
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
    };
    this->runTest(expected_output_ids, top_ks, batch_size, top_ps, batch_size, nullptr, nullptr, true);
    delete[] top_ks;
    delete[] top_ps;
}

template<typename T>
class SamplingDecodeTest2: public FtTestBase {

public:
    void SetUp() override
    {
        FtTestBase::SetUp();
        check_cuda_error(cudaGetDeviceProperties(&prop, 0));
        check_cuda_error(cublasCreate(&cublas_handle));
        check_cuda_error(cublasLtCreate(&cublaslt_handle));
        check_cuda_error(cublasSetStream(cublas_handle, stream));
Chen Xin's avatar
Chen Xin committed
920
        cublas_algo_map      = new cublasAlgoMap("");
Li Zhang's avatar
Li Zhang committed
921
        cublas_wrapper_mutex = new std::mutex();
Chen Xin's avatar
Chen Xin committed
922
923
        cublas_wrapper       = new cublasMMWrapper(
            cublas_handle, cublaslt_handle, stream, cublas_algo_map, cublas_wrapper_mutex, allocator);
Li Zhang's avatar
Li Zhang committed
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
    }
    void TearDown() override
    {
        delete cublas_wrapper;
        delete cublas_wrapper_mutex;
        delete cublas_algo_map;
        check_cuda_error(cublasLtDestroy(cublaslt_handle));
        check_cuda_error(cublasDestroy(cublas_handle));
        FtTestBase::TearDown();
    }

protected:
    using FtTestBase::stream;
    using FtTestBase::allocator;

    struct cudaDeviceProp prop;
Chen Xin's avatar
Chen Xin committed
940
941
942
943
944
    cublasHandle_t        cublas_handle;
    cublasLtHandle_t      cublaslt_handle;
    cublasAlgoMap*        cublas_algo_map;
    std::mutex*           cublas_wrapper_mutex;
    cublasMMWrapper*      cublas_wrapper;
Li Zhang's avatar
Li Zhang committed
945
946
947
948
949
950
951
952
953
954
955

    DataType data_type = getTensorType<T>();

    size_t batch_size;
    size_t beam_width;
    size_t batchxbeam;
    size_t vocab_size;
    size_t max_input_len;
    size_t max_output_len;
    size_t max_seq_len;

Chen Xin's avatar
Chen Xin committed
956
    uint  top_k;
Li Zhang's avatar
Li Zhang committed
957
958
959
    float top_p;
    float temperature;
    float repetition_penalty;
Chen Xin's avatar
Chen Xin committed
960
    int   end_id;
Li Zhang's avatar
Li Zhang committed
961

Chen Xin's avatar
Chen Xin committed
962
963
964
    T*     h_logits;
    T*     h_probs;
    T*     h_log_probs;
Li Zhang's avatar
Li Zhang committed
965
966
    float* h_cum_log_probs;
    float* h_output_log_probs;
Chen Xin's avatar
Chen Xin committed
967
    int*   h_output_ids;
Li Zhang's avatar
Li Zhang committed
968

Chen Xin's avatar
Chen Xin committed
969
970
    T*     d_logits;
    int*   d_input_lengths;
Li Zhang's avatar
Li Zhang committed
971
972
    float* d_cum_log_probs;
    float* d_output_log_probs;
Chen Xin's avatar
Chen Xin committed
973
974
    int*   d_output_ids;
    int*   d_end_ids;
Li Zhang's avatar
Li Zhang committed
975
976
977

    void setup(SamplingLayerTestParam param)
    {
Chen Xin's avatar
Chen Xin committed
978
979
980
981
982
        batch_size     = param.batch_size;
        beam_width     = param.beam_width;
        batchxbeam     = batch_size * param.beam_width;
        vocab_size     = param.vocab_size;
        max_input_len  = 0;
Li Zhang's avatar
Li Zhang committed
983
        max_output_len = param.output_len;
Chen Xin's avatar
Chen Xin committed
984
        max_seq_len    = max_input_len + max_output_len;
Li Zhang's avatar
Li Zhang committed
985
986
987
988

        top_k = param.top_k;
        top_p = param.top_p;
        // use default values having no effect.
Chen Xin's avatar
Chen Xin committed
989
        temperature        = 1.0f;
Li Zhang's avatar
Li Zhang committed
990
        repetition_penalty = 1.0f;
Chen Xin's avatar
Chen Xin committed
991
        end_id             = 0;
Li Zhang's avatar
Li Zhang committed
992

Chen Xin's avatar
Chen Xin committed
993
        h_logits     = new T[batchxbeam * vocab_size];
Li Zhang's avatar
Li Zhang committed
994
995
        h_output_ids = new int[batchxbeam];

Chen Xin's avatar
Chen Xin committed
996
        d_logits        = reinterpret_cast<T*>(allocator->malloc(sizeof(T) * batchxbeam * vocab_size));
Li Zhang's avatar
Li Zhang committed
997
        d_input_lengths = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * batchxbeam));
Chen Xin's avatar
Chen Xin committed
998
999
        d_output_ids    = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * max_seq_len * batchxbeam));
        d_end_ids       = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * batch_size));
Li Zhang's avatar
Li Zhang committed
1000
1001
1002
1003
1004
1005
1006

        // Init by zero.
        deviceFill(d_input_lengths, batchxbeam, 0, stream);
        deviceFill(d_output_ids, max_seq_len * batchxbeam, 0, stream);
        deviceFill(d_end_ids, batch_size, end_id);
    }

Chen Xin's avatar
Chen Xin committed
1007
1008
    void teardown()
    {
Li Zhang's avatar
Li Zhang committed
1009
1010
1011
1012
        delete[] h_logits;
        delete[] h_output_ids;
    }

Chen Xin's avatar
Chen Xin committed
1013
    void runCurandTest(SamplingLayerTestParam param, bool use_local_batch, bool use_single_random_seed)
Li Zhang's avatar
Li Zhang committed
1014
1015
1016
1017
1018
1019
1020
    {
        setup(param);
        const DataType data_type = getTensorType<T>();

        const size_t local_batch_size = use_local_batch ? 3 : batch_size;
        assert(batch_size % local_batch_size == 0);

Chen Xin's avatar
Chen Xin committed
1021
        DynamicDecodeLayer<T>* dynamic_decode_layer = new DynamicDecodeLayer<T>(vocab_size,
Li Zhang's avatar
Li Zhang committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
                                                                                vocab_size,
                                                                                end_id,
                                                                                stream,
                                                                                cublas_wrapper,
                                                                                allocator,
                                                                                false,   // is_free_buffer_after_forward
                                                                                &prop);  // cuda_device_prop

        // Prepare decoding arguments
Chen Xin's avatar
Chen Xin committed
1031
1032
1033
        const size_t        random_seed_size = use_single_random_seed ? 1 : batch_size;
        const size_t        period_size      = 3;
        unsigned long long* random_seed      = new unsigned long long[random_seed_size];
Li Zhang's avatar
Li Zhang committed
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
        for (size_t i = 0; i < random_seed_size; ++i) {
            random_seed[i] = i / period_size;
        }

        TensorMap runtime_args;
        runtime_args.insert({"random_seed", Tensor(MEMORY_CPU, TYPE_UINT64, {random_seed_size}, random_seed)});
        runtime_args.insert({"runtime_top_k", Tensor(MEMORY_CPU, TYPE_UINT32, {1}, &top_k)});
        runtime_args.insert({"runtime_top_p", Tensor(MEMORY_CPU, TYPE_FP32, {1}, &top_p)});
        dynamic_decode_layer->setup(batch_size, beam_width, &runtime_args);

        for (size_t step = max_input_len; step < max_output_len; ++step) {
            const size_t iteration_num = batch_size / local_batch_size;
            initRandom(h_logits, beam_width * vocab_size, -3.0f, 3.0f);
            tile(h_logits, batch_size, beam_width * vocab_size);
            cudaH2Dcpy(d_logits, h_logits, batchxbeam * vocab_size);

            for (uint ite = 0; ite < iteration_num; ++ite) {
Chen Xin's avatar
Chen Xin committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
                TensorMap dynamic_decode_input_tensors(
                    {{"logits", Tensor{MEMORY_GPU, data_type, {batch_size, beam_width, vocab_size}, d_logits}},
                     {"embedding_bias", Tensor{MEMORY_GPU, data_type, {vocab_size}, nullptr}},
                     {"step", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &step}},
                     {"max_input_length", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &max_input_len}},
                     {"input_lengths", Tensor{MEMORY_GPU, TYPE_INT32, {batch_size, beam_width}, d_input_lengths}},
                     {"ite", Tensor{MEMORY_CPU, TYPE_UINT32, {1}, &ite}},
                     {"local_batch_size", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &local_batch_size}},
                     {"end_id", Tensor{MEMORY_GPU, TYPE_INT32, {batch_size}, d_end_ids}},
                     {"random_seed", {MEMORY_CPU, TYPE_UINT64, {random_seed_size}, random_seed}},
                     {"runtime_top_k", {MEMORY_CPU, TYPE_UINT32, {1}, &top_k}},
                     {"runtime_top_p", {MEMORY_CPU, TYPE_FP32, {1}, &top_p}}});
Li Zhang's avatar
Li Zhang committed
1063
1064

                // common outputs
Chen Xin's avatar
Chen Xin committed
1065
1066
1067
1068
1069
1070
1071
                TensorMap dynamic_decode_output_tensors(
                    {{"output_ids",
                      Tensor{MEMORY_GPU, TYPE_INT32, {max_seq_len, batch_size, beam_width}, d_output_ids}},
                     {"finished", Tensor{MEMORY_GPU, TYPE_BOOL, {batch_size * beam_width}, nullptr}},
                     {"sequence_length", Tensor{MEMORY_GPU, TYPE_INT32, {batch_size * beam_width}, nullptr}}});

                dynamic_decode_layer->forward(&dynamic_decode_output_tensors, &dynamic_decode_input_tensors);
Li Zhang's avatar
Li Zhang committed
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
                sync_check_cuda_error();

                // check results.
                cudaD2Hcpy(h_output_ids,
                           dynamic_decode_output_tensors.at("output_ids").getPtrWithOffset<int>(step * batchxbeam),
                           batchxbeam);
            }
            // The same seed produces the same random number.
            for (size_t i = 0; i + period_size - 1 < batchxbeam; i += period_size) {
                for (size_t j = 1; j < period_size; ++j) {
                    EXPECT_TRUE(h_output_ids[i] == h_output_ids[i + j])
                        << fmtstr("Fail at step %u val[%d]=%d <> val[%d]=%d",
Chen Xin's avatar
Chen Xin committed
1084
1085
1086
1087
1088
                                  step,
                                  i,
                                  h_output_ids[i],
                                  i + j,
                                  h_output_ids[i + j]);
Li Zhang's avatar
Li Zhang committed
1089
1090
1091
1092
1093
1094
1095
1096
                }
            }
        }
        delete dynamic_decode_layer;
        delete[] random_seed;
        teardown();
    }

Chen Xin's avatar
Chen Xin committed
1097
1098
    void runCumLogProbTest(SamplingLayerTestParam param)
    {
Li Zhang's avatar
Li Zhang committed
1099
        setup(param);
Chen Xin's avatar
Chen Xin committed
1100
1101
1102
        unsigned long long     seed                 = 43;
        const DataType         data_type            = getTensorType<T>();
        DynamicDecodeLayer<T>* dynamic_decode_layer = new DynamicDecodeLayer<T>(vocab_size,
Li Zhang's avatar
Li Zhang committed
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
                                                                                vocab_size,
                                                                                end_id,
                                                                                stream,
                                                                                cublas_wrapper,
                                                                                allocator,
                                                                                false,   // is_free_buffer_after_forward
                                                                                &prop);  // cuda_device_prop

        // Logit values in the host of shape ((batch_size x beam) x vocab_size) where beam = 1.
        // T* h_logits = new T[batch_size * beam_width * vocab_size];
Chen Xin's avatar
Chen Xin committed
1113
1114
1115
1116
        T*     h_probs                = new T[batch_size * beam_width * vocab_size];
        T*     h_log_probs            = new T[batch_size * beam_width * vocab_size];
        float* h_cum_log_probs        = new float[batch_size * beam_width];
        float* h_output_log_probs     = new float[max_output_len * batch_size * beam_width];
Li Zhang's avatar
Li Zhang committed
1117
1118
1119
1120
1121
1122
1123
1124
        float* expected_cum_log_probs = new float[batch_size * beam_width];
        initRandom(h_logits, batch_size * beam_width * vocab_size, -3.0f, 3.0f);
        computeProb(h_probs, h_logits, batch_size * beam_width, vocab_size);
        computeLogProb(h_log_probs, h_logits, batch_size * beam_width, vocab_size);
        std::fill_n(expected_cum_log_probs, batch_size * beam_width, 0);

        int* tiled_input_lengths_buf = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * batch_size * beam_width));
        float* cum_log_probs = reinterpret_cast<float*>(allocator->malloc(sizeof(float) * batch_size * beam_width));
Chen Xin's avatar
Chen Xin committed
1125
1126
        float* output_log_probs =
            reinterpret_cast<float*>(allocator->malloc(sizeof(float) * max_output_len * batch_size * beam_width));
Li Zhang's avatar
Li Zhang committed
1127

Chen Xin's avatar
Chen Xin committed
1128
1129
        int* output_ids =
            reinterpret_cast<int*>(allocator->malloc(sizeof(int) * max_seq_len * batch_size * beam_width));
Li Zhang's avatar
Li Zhang committed
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
        int* h_output_ids = new int[batch_size * beam_width];

        int* end_ids = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * batch_size));
        deviceFill(end_ids, batch_size, end_id);

        // Init by zero.
        cudaMemset(cum_log_probs, 0, sizeof(float) * batch_size * beam_width);
        cudaMemset(output_log_probs, 0, sizeof(float) * max_output_len * batch_size * beam_width);
        cudaMemset(output_ids, 0, sizeof(int) * max_seq_len * batch_size * beam_width);

Chen Xin's avatar
Chen Xin committed
1140
1141
1142
1143
1144
        TensorMap input_tensors({{"random_seed", {MEMORY_CPU, TYPE_INT32, {1}, &seed}},
                                 {"runtime_top_k", {MEMORY_CPU, TYPE_UINT32, {1}, &top_k}},
                                 {"runtime_top_p", {MEMORY_CPU, TYPE_FP32, {1}, &top_p}},
                                 {"temperature", Tensor{MEMORY_CPU, TYPE_FP32, {1}, &temperature}},
                                 {"repetition_penalty", Tensor{MEMORY_CPU, TYPE_FP32, {1}, &repetition_penalty}}});
Li Zhang's avatar
Li Zhang committed
1145
1146
1147
1148
1149
1150
        dynamic_decode_layer->setup(batch_size, beam_width, &input_tensors);

        for (size_t step = max_input_len; step < max_output_len; ++step) {
            uint ite = 0;
            // Reset by the test value since the sampling layer internally update the logit buffer (making it log-prob).
            cudaH2Dcpy(d_logits, h_logits, batch_size * beam_width * vocab_size);
Chen Xin's avatar
Chen Xin committed
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
            TensorMap dynamic_decode_input_tensors(
                {{"logits", Tensor{MEMORY_GPU, TYPE_FP32, {batch_size, beam_width, vocab_size}, d_logits}},
                 {"embedding_bias", Tensor{MEMORY_GPU, data_type, {vocab_size}, nullptr}},
                 {"step", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &step}},
                 {"max_input_length", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &max_input_len}},
                 {"input_lengths", Tensor{MEMORY_GPU, TYPE_INT32, {batch_size, beam_width}, tiled_input_lengths_buf}},
                 {"ite", Tensor{MEMORY_CPU, TYPE_UINT32, {1}, &ite}},
                 {"local_batch_size", Tensor{MEMORY_CPU, TYPE_INT32, {1}, &batch_size}},
                 {"end_id", Tensor{MEMORY_GPU, TYPE_INT32, {batch_size}, end_ids}},
                 {"random_seed", {MEMORY_CPU, TYPE_UINT64, {1}, &seed}},
                 {"runtime_top_k", {MEMORY_CPU, TYPE_UINT32, {1}, &top_k}},
                 {"runtime_top_p", {MEMORY_CPU, TYPE_FP32, {1}, &top_p}},
                 {"temperature", Tensor{MEMORY_CPU, TYPE_FP32, {1}, &temperature}},
                 {"repetition_penalty", Tensor{MEMORY_CPU, TYPE_FP32, {1}, &repetition_penalty}}});
Li Zhang's avatar
Li Zhang committed
1165
1166

            // common outputs
Chen Xin's avatar
Chen Xin committed
1167
1168
1169
1170
1171
1172
1173
            TensorMap dynamic_decode_output_tensors(
                {{"output_ids", Tensor{MEMORY_GPU, TYPE_INT32, {max_seq_len, batch_size, beam_width}, output_ids}},
                 {"finished", Tensor{MEMORY_GPU, TYPE_BOOL, {batch_size * beam_width}, nullptr}},
                 {"cum_log_probs", Tensor{MEMORY_GPU, TYPE_FP32, {batch_size * beam_width}, cum_log_probs}},
                 {"output_log_probs",
                  Tensor{MEMORY_GPU, TYPE_FP32, {max_seq_len, batch_size, beam_width}, output_log_probs}},
                 {"sequence_length", Tensor{MEMORY_GPU, TYPE_INT32, {batch_size * beam_width}, nullptr}}});
Li Zhang's avatar
Li Zhang committed
1174

Chen Xin's avatar
Chen Xin committed
1175
            dynamic_decode_layer->forward(&dynamic_decode_output_tensors, &dynamic_decode_input_tensors);
Li Zhang's avatar
Li Zhang committed
1176

lvhan028's avatar
lvhan028 committed
1177
            TM_LOG_DEBUG("Step %2d generated ids", step);
Chen Xin's avatar
Chen Xin committed
1178
1179
1180
1181
            cudaD2Hcpy(
                h_output_ids,
                dynamic_decode_output_tensors.at("output_ids").getPtrWithOffset<int>(step * (batch_size * beam_width)),
                batch_size * beam_width);
Li Zhang's avatar
Li Zhang committed
1182
1183
1184
1185
1186
            cudaD2Hcpy(h_cum_log_probs, cum_log_probs, batch_size * beam_width);
            cudaD2Hcpy(h_output_log_probs, output_log_probs, max_output_len * batch_size * beam_width);
            for (size_t i = 0; i < batch_size * beam_width; ++i) {
                int idx = i * vocab_size + h_output_ids[i];
                expected_cum_log_probs[i] += (float)h_log_probs[idx];
Chen Xin's avatar
Chen Xin committed
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
                TM_LOG_DEBUG("| step %2d batch %2d idx %7d id %6d | log-prob %9.4f (expt: %9.4f) "
                             "| cum-log-prob %9.4f (expt: %9.4f) | prob %9.4e",
                             (int)step,
                             (int)i,
                             (int)idx,
                             (int)h_output_ids[i],
                             h_output_log_probs[step * batch_size * beam_width + i],
                             (float)h_log_probs[idx],
                             h_cum_log_probs[i],
                             expected_cum_log_probs[i],
                             (float)h_probs[idx]);
Li Zhang's avatar
Li Zhang committed
1198
            }
lvhan028's avatar
lvhan028 committed
1199
            TM_LOG_DEBUG("");
Li Zhang's avatar
Li Zhang committed
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
        }

        bool passed = checkResult(param.toString(), cum_log_probs, expected_cum_log_probs, batch_size * beam_width);
        EXPECT_TRUE(passed);

        delete[] expected_cum_log_probs;
        delete[] h_output_log_probs;
        delete[] h_cum_log_probs;
        delete[] h_log_probs;
        delete[] h_probs;

        delete dynamic_decode_layer;
    }
};

TYPED_TEST_SUITE(SamplingDecodeTest2, FloatAndHalfTypes);

TYPED_TEST(SamplingDecodeTest2, CorrectnessSingleRandTopK)
{
    // test TopKSampling
    this->runCurandTest({113, 1201, 1, 3, 1.0f, 5}, false, true);
}

TYPED_TEST(SamplingDecodeTest2, CorrectnessSingleRandTopP)
{
    this->runCurandTest({113, 1201, 1, 0, 1.0f, 5}, false, true);
}

TYPED_TEST(SamplingDecodeTest2, CorrectnessBatchRandTopK)
{
    // test TopKSampling
    this->runCurandTest({113, 1201, 1, 3, 1.0f, 5}, false, false);
}

TYPED_TEST(SamplingDecodeTest2, CorrectnessBatchRandTopP)
{
    this->runCurandTest({113, 1201, 1, 0, 1.0f, 5}, false, false);
}

TYPED_TEST(SamplingDecodeTest2, CorrectnessBatchRandTopKLocalBatch)
{
    // test TopKSampling
    this->runCurandTest({99, 1201, 1, 3, 1.0f, 5}, true, false);
}

TYPED_TEST(SamplingDecodeTest2, CorrectnessBatchRandTopPLocalBatch)
{
    this->runCurandTest({99, 1201, 1, 0, 1.0f, 5}, true, false);
}

TYPED_TEST(SamplingDecodeTest2, CorrectnessCumLogProbTopK)
{
    this->runCumLogProbTest({99, 1201, 1, 5, 1.0f, 5});
}

TYPED_TEST(SamplingDecodeTest2, CorrectnessCumLogProbTopP)
{
    this->runCumLogProbTest({99, 1201, 1, 0, 1.0f, 5});
}