test_logprob_kernels.cu 12.5 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
#include <assert.h>
#include <float.h>
Chen Xin's avatar
Chen Xin committed
3
#include <math.h>
Li Zhang's avatar
Li Zhang committed
4
5
6
#include <stdexcept>
#include <tuple>
#include <vector>
Chen Xin's avatar
Chen Xin committed
7
#ifdef __linux__
Li Zhang's avatar
Li Zhang committed
8
#include <sys/time.h>
Chen Xin's avatar
Chen Xin committed
9
#endif
lvhan028's avatar
lvhan028 committed
10
11
12
13
14
#include "src/turbomind/kernels/logprob_kernels.h"
#include "src/turbomind/utils/allocator.h"
#include "src/turbomind/utils/cuda_utils.h"
#include "src/turbomind/utils/logger.h"
#include "src/turbomind/utils/memory_utils.h"
Li Zhang's avatar
Li Zhang committed
15

16
#include "gtest_utils.h"
Li Zhang's avatar
Li Zhang committed
17

lvhan028's avatar
lvhan028 committed
18
using namespace turbomind;
Li Zhang's avatar
Li Zhang committed
19
20
21
22
23
24
25
26
27

////////////////////////////////////////////////////////////////////////////////////

struct LogProbKernelTestParam {
    size_t max_input_length;
    size_t batch_size;
    size_t vocab_size;
    size_t beam_width;

Chen Xin's avatar
Chen Xin committed
28
29
    std::string toString()
    {
Li Zhang's avatar
Li Zhang committed
30
        return fmtstr("LogProbKernelTestParam[max_input_length=%ld, batch=%ld, vocab=%ld, beam_width=%ld]",
Chen Xin's avatar
Chen Xin committed
31
32
33
34
                      max_input_length,
                      batch_size,
                      vocab_size,
                      beam_width);
Li Zhang's avatar
Li Zhang committed
35
36
37
38
39
    }
};

/////////////////////////////////// Unittests //////////////////////////////////////////
template<typename T>
Chen Xin's avatar
Chen Xin committed
40
class LogProbKernelTest: public FtTestBase {
Li Zhang's avatar
Li Zhang committed
41
42

protected:
Chen Xin's avatar
Chen Xin committed
43
44
45
46
47
    void computeCumLogProbs(float*       cum_log_probs,
                            float*       log_probs,
                            const T*     logits,
                            const int*   input_ids,
                            const int*   input_lengths,
Li Zhang's avatar
Li Zhang committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
                            const size_t max_input_length,
                            const size_t batch_size,
                            const size_t vocab_size,
                            const size_t vocab_size_padded)
    {
        for (size_t step = 0; step < max_input_length; ++step) {
            for (size_t i = 0; i < batch_size; ++i) {
                if ((int)step == 0) {
                    if (log_probs != nullptr) {
                        log_probs[i] = 0.0f;
                    }
                    cum_log_probs[i] = 0.0f;
                }
                else if ((int)step < input_lengths[i]) {
Chen Xin's avatar
Chen Xin committed
62
63
64
                    size_t   step_offset = (step - 1) * batch_size * vocab_size_padded;
                    const T* vec         = logits + step_offset + i * vocab_size_padded;
                    float    max_logits  = -FLT_MAX;
Li Zhang's avatar
Li Zhang committed
65
66
67
68
69
70
71
72
73
74
                    for (size_t v = 0; v < vocab_size; ++v) {
                        float val = static_cast<float>(vec[v]);
                        if (val > max_logits) {
                            max_logits = val;
                        }
                    }
                    float sum = 0.0f;
                    for (size_t v = 0; v < vocab_size; ++v) {
                        sum += expf(static_cast<float>(vec[v]) - max_logits);
                    }
Chen Xin's avatar
Chen Xin committed
75
                    int   token_id = input_ids[step * batch_size + i];
Li Zhang's avatar
Li Zhang committed
76
77
78
79
80
81
82
83
84
85
                    float log_prob = static_cast<float>(vec[token_id]) - max_logits - log(sum);
                    if (log_probs != nullptr) {
                        log_probs[step * batch_size + i] = log_prob;
                    }
                    cum_log_probs[i] += log_prob;
                }
            }
        }
    }

Chen Xin's avatar
Chen Xin committed
86
87
88
89
90
    void computeCumLogProbsBatchFirst(float*       cum_log_probs,
                                      float*       log_probs,
                                      const T*     logits,
                                      const int*   input_ids,
                                      const int*   input_lengths,
Li Zhang's avatar
Li Zhang committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
                                      const size_t max_input_length,
                                      const size_t batch_size,
                                      const size_t vocab_size,
                                      const size_t vocab_size_padded)
    {
        for (size_t i = 0; i < batch_size; ++i) {
            size_t batch_offset = i * max_input_length * vocab_size_padded;
            for (size_t step = 0; step < max_input_length; ++step) {
                if ((int)step == 0) {
                    if (log_probs != nullptr) {
                        log_probs[i * max_input_length] = 0.0f;
                    }
                    cum_log_probs[i] = 0.0f;
                }
                else if ((int)step < input_lengths[i]) {
Chen Xin's avatar
Chen Xin committed
106
107
                    const T* vec        = logits + batch_offset + (step - 1) * vocab_size_padded;
                    float    max_logits = -FLT_MAX;
Li Zhang's avatar
Li Zhang committed
108
109
110
111
112
113
114
115
116
117
                    for (size_t v = 0; v < vocab_size; ++v) {
                        float val = static_cast<float>(vec[v]);
                        if (val > max_logits) {
                            max_logits = val;
                        }
                    }
                    float sum = 0.0f;
                    for (size_t v = 0; v < vocab_size; ++v) {
                        sum += expf(static_cast<float>(vec[v]) - max_logits);
                    }
Chen Xin's avatar
Chen Xin committed
118
                    int   token_id = input_ids[i * max_input_length + step];
Li Zhang's avatar
Li Zhang committed
119
120
121
122
123
124
125
126
127
128
129
                    float log_prob = static_cast<float>(vec[token_id]) - max_logits - log(sum);
                    if (log_probs != nullptr) {
                        log_probs[i * max_input_length + step] = log_prob;
                    }
                    cum_log_probs[i] += log_prob;
                }
            }
        }
    }

public:
Chen Xin's avatar
Chen Xin committed
130
131
    void runTest(LogProbKernelTestParam param)
    {
Li Zhang's avatar
Li Zhang committed
132
        size_t max_input_length = param.max_input_length;
Chen Xin's avatar
Chen Xin committed
133
134
        size_t batchxbeam       = param.batch_size * param.beam_width;
        size_t vocab_size       = param.vocab_size;
Li Zhang's avatar
Li Zhang committed
135
136
137
138
        // Make multiple of 8 as GPT does.
        size_t vocab_size_padded = static_cast<size_t>(ceil(vocab_size / 8.f) * 8);

        // input values
Chen Xin's avatar
Chen Xin committed
139
140
        T*   h_logits        = new T[max_input_length * batchxbeam * vocab_size];
        int* h_input_ids     = new int[max_input_length * batchxbeam];
Li Zhang's avatar
Li Zhang committed
141
142
143
144
145
146
147
148
149
150
151
152
        int* h_input_lengths = new int[batchxbeam];

        // output buffers
        float* expected_cum_log_probs = new float[batchxbeam];

        // initialize host buffers
        initRandom(h_logits, max_input_length * batchxbeam * vocab_size, -10.0f / vocab_size, -1.0f);
        initRandomInt(h_input_ids, max_input_length * batchxbeam, 0, vocab_size);
        initRandomInt(h_input_lengths, batchxbeam, 1, max_input_length + 1);
        memset(expected_cum_log_probs, 0, sizeof(float) * batchxbeam);

        // device buffers
Chen Xin's avatar
Chen Xin committed
153
154
155
        T*   d_logits = reinterpret_cast<T*>(allocator->malloc(sizeof(T) * max_input_length * batchxbeam * vocab_size));
        int* d_input_ids       = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * max_input_length * batchxbeam));
        int* d_input_lengths   = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * batchxbeam));
Li Zhang's avatar
Li Zhang committed
156
157
158
159
160
161
162
163
164
        float* d_cum_log_probs = reinterpret_cast<float*>(allocator->malloc(sizeof(float) * batchxbeam));

        // initialize device buffers
        cudaH2Dcpy(d_logits, h_logits, max_input_length * batchxbeam * vocab_size);
        cudaH2Dcpy(d_input_ids, h_input_ids, max_input_length * batchxbeam);
        cudaH2Dcpy(d_input_lengths, h_input_lengths, batchxbeam);
        deviceFill(d_cum_log_probs, batchxbeam, 0.0f);

        size_t workspace_size = sizeof(float) * max_input_length * batchxbeam;
Chen Xin's avatar
Chen Xin committed
165
        void*  workspace      = allocator->malloc(workspace_size);
Li Zhang's avatar
Li Zhang committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        invokeLogProbFromLogits(d_cum_log_probs,
                                d_logits,
                                d_input_ids,
                                d_input_lengths,
                                max_input_length,
                                batchxbeam,
                                vocab_size,
                                vocab_size_padded,
                                workspace,
                                workspace_size,
                                stream,
                                false);
        computeCumLogProbs(expected_cum_log_probs,
                           nullptr,
                           h_logits,
                           h_input_ids,
                           h_input_lengths,
                           max_input_length,
                           batchxbeam,
                           vocab_size,
                           vocab_size_padded);
        bool passed = checkResult(param.toString(), d_cum_log_probs, expected_cum_log_probs, batchxbeam);
        EXPECT_TRUE(passed);

lvhan028's avatar
lvhan028 committed
190
        TM_LOG_DEBUG("free host buffers");
Li Zhang's avatar
Li Zhang committed
191
192
193
194
195
196
        delete[] expected_cum_log_probs;
        delete[] h_input_lengths;
        delete[] h_input_ids;
        delete[] h_logits;
    }

Chen Xin's avatar
Chen Xin committed
197
198
    void runBatchFirstTest(LogProbKernelTestParam param)
    {
Li Zhang's avatar
Li Zhang committed
199
        size_t max_input_length = param.max_input_length;
Chen Xin's avatar
Chen Xin committed
200
201
        size_t batchxbeam       = param.batch_size * param.beam_width;
        size_t vocab_size       = param.vocab_size;
Li Zhang's avatar
Li Zhang committed
202
203
204
205
        // Make multiple of 8 as GPT does.
        size_t vocab_size_padded = static_cast<size_t>(ceil(vocab_size / 8.f) * 8);

        // input values
Chen Xin's avatar
Chen Xin committed
206
207
        T*   h_logits        = new T[max_input_length * batchxbeam * vocab_size_padded];
        int* h_input_ids     = new int[max_input_length * batchxbeam];
Li Zhang's avatar
Li Zhang committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
        int* h_input_lengths = new int[batchxbeam];

        // output buffers
        float* expected_cum_log_probs = new float[batchxbeam];

        // initialize host buffers
        initRandom(h_logits, max_input_length * batchxbeam * vocab_size_padded, -10.0f / vocab_size, -1.0f);
        initRandomInt(h_input_ids, max_input_length * batchxbeam, 0, vocab_size);
        initRandomInt(h_input_lengths, batchxbeam, 1, max_input_length + 1);
        memset(expected_cum_log_probs, 0, sizeof(float) * batchxbeam);

        // device buffers
        T* d_logits =
            reinterpret_cast<T*>(allocator->malloc(sizeof(T) * max_input_length * batchxbeam * vocab_size_padded));
Chen Xin's avatar
Chen Xin committed
222
223
        int*   d_input_ids     = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * max_input_length * batchxbeam));
        int*   d_input_lengths = reinterpret_cast<int*>(allocator->malloc(sizeof(int) * batchxbeam));
Li Zhang's avatar
Li Zhang committed
224
225
226
227
228
229
230
231
232
        float* d_cum_log_probs = reinterpret_cast<float*>(allocator->malloc(sizeof(float) * batchxbeam));

        // initialize device buffers
        cudaH2Dcpy(d_logits, h_logits, max_input_length * batchxbeam * vocab_size_padded);
        cudaH2Dcpy(d_input_ids, h_input_ids, max_input_length * batchxbeam);
        cudaH2Dcpy(d_input_lengths, h_input_lengths, batchxbeam);
        check_cuda_error(cudaMemset(d_cum_log_probs, 0, sizeof(float) * batchxbeam));

        size_t workspace_size = sizeof(float) * max_input_length * batchxbeam;
Chen Xin's avatar
Chen Xin committed
233
        void*  workspace      = allocator->malloc(workspace_size);
Li Zhang's avatar
Li Zhang committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        invokeLogProbFromLogits(d_cum_log_probs,
                                d_logits,
                                d_input_ids,
                                d_input_lengths,
                                max_input_length,
                                batchxbeam,
                                vocab_size,
                                vocab_size_padded,
                                workspace,
                                workspace_size,
                                stream,
                                true);

        computeCumLogProbsBatchFirst(expected_cum_log_probs,
Chen Xin's avatar
Chen Xin committed
248
249
250
251
252
253
254
255
256
257
                                     nullptr,
                                     h_logits,
                                     h_input_ids,
                                     h_input_lengths,
                                     max_input_length,
                                     batchxbeam,
                                     vocab_size,
                                     vocab_size_padded);
        std::string tag    = param.toString() + (std::is_same<T, float>::value ? " (fp32)" : " (fp16)");
        bool        passed = checkResult(tag.c_str(), d_cum_log_probs, expected_cum_log_probs, batchxbeam);
Li Zhang's avatar
Li Zhang committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
        EXPECT_TRUE(passed);

        delete[] expected_cum_log_probs;
        delete[] h_input_lengths;
        delete[] h_input_ids;
        delete[] h_logits;
    }
};

TYPED_TEST_SUITE(LogProbKernelTest, FloatAndHalfTypes);

TYPED_TEST(LogProbKernelTest, SingleStep)
{
    this->runTest({1, 32, 16, 1});
}

TYPED_TEST(LogProbKernelTest, AccumLongStep129)
{
    this->runTest({129, 8, 50211, 1});
}

TYPED_TEST(LogProbKernelTest, AccumLongStep1023)
{
    this->runTest({1023, 8, 5001, 1});
}

TYPED_TEST(LogProbKernelTest, AccumLongStep4096)
{
    this->runTest({4096, 8, 5001, 1});
}

TYPED_TEST(LogProbKernelTest, BatchFirstSingleStep)
{
    this->runBatchFirstTest({1, 32, 16, 1});
}

TYPED_TEST(LogProbKernelTest, BatchFirstAccumLongStep129)
{
    this->runBatchFirstTest({129, 8, 50211, 1});
}

TYPED_TEST(LogProbKernelTest, BatchFirstAccumLongStep1023)
{
    this->runBatchFirstTest({1023, 8, 5001, 1});
}

TYPED_TEST(LogProbKernelTest, BatchFirstAccumLongStep4096)
{
    this->runBatchFirstTest({4096, 8, 5001, 1});
}