README.md 8.96 KB
Newer Older
lvhan028's avatar
lvhan028 committed
1
<div align="center">
lvhan028's avatar
lvhan028 committed
2
  <img src="resources/lmdeploy-logo.png" width="450"/>
lvhan028's avatar
lvhan028 committed
3
4
5
6
7

English | [简体中文](README_zh-CN.md)

</div>

8
<p align="center">
vansin's avatar
vansin committed
9
    👋 join us on <a href="https://twitter.com/intern_lm" target="_blank">Twitter</a>, <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://r.vansin.top/?r=internwx" target="_blank">WeChat</a>
10
</p>
lvhan028's avatar
lvhan028 committed
11

12
13
______________________________________________________________________

q.yao's avatar
q.yao committed
14
## News 🎉
15

Chen Xin's avatar
Chen Xin committed
16
- \[2023/08\] TurboMind supports Windows (tp=1)
17
- \[2023/08\] TurboMind supports 4-bit inference, 2.4x faster than FP16, the fastest open-source implementation🚀. Check [this](./docs/en/w4a16.md) guide for detailed info
pppppM's avatar
pppppM committed
18
19
- \[2023/08\] LMDeploy has launched on the [HuggingFace Hub](https://huggingface.co/lmdeploy), providing ready-to-use 4-bit models.
- \[2023/08\] LMDeploy supports 4-bit quantization using the [AWQ](https://arxiv.org/abs/2306.00978) algorithm.
20
21
- \[2023/07\] TurboMind supports Llama-2 70B with GQA.
- \[2023/07\] TurboMind supports Llama-2 7B/13B.
q.yao's avatar
q.yao committed
22
- \[2023/07\] TurboMind supports tensor-parallel inference of InternLM.
23
24
25

______________________________________________________________________

lvhan028's avatar
lvhan028 committed
26
27
## Introduction

lvhan028's avatar
lvhan028 committed
28
29
LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the [MMRazor](https://github.com/open-mmlab/mmrazor) and [MMDeploy](https://github.com/open-mmlab/mmdeploy) teams. It has the following core features:

tpoisonooo's avatar
tpoisonooo committed
30
- **Efficient Inference Engine (TurboMind)**: Based on [FasterTransformer](https://github.com/NVIDIA/FasterTransformer), we have implemented an efficient inference engine - TurboMind, which supports the inference of LLaMA and its variant models on NVIDIA GPUs.
lvhan028's avatar
lvhan028 committed
31

32
- **Interactive Inference Mode**: By caching the k/v of attention during multi-round dialogue processes, it remembers dialogue history, thus avoiding repetitive processing of historical sessions.
lvhan028's avatar
lvhan028 committed
33

tpoisonooo's avatar
tpoisonooo committed
34
- **Multi-GPU Model Deployment and Quantization**: We provide comprehensive model deployment and quantification support, and have been validated at different scales.
35
36

- **Persistent Batch Inference**: Further optimization of model execution efficiency.
lvhan028's avatar
lvhan028 committed
37

pppppM's avatar
pppppM committed
38
![PersistentBatchInference](https://github.com/InternLM/lmdeploy/assets/67539920/e3876167-0671-44fc-ac52-5a0f9382493e)
lvhan028's avatar
lvhan028 committed
39

pppppM's avatar
pppppM committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
## Supported Models

`LMDeploy` has two inference backends, `Pytorch` and `TurboMind`.

### TurboMind

> **Note**<br />
> W4A16 inference requires Nvidia GPU with Ampere architecture or above.

|  Models  | Tensor Parallel | FP16 | KV INT8 | W4A16 | W8A8 |
| :------: | :-------------: | :--: | :-----: | :---: | :--: |
|  Llama   |       Yes       | Yes  |   Yes   |  Yes  |  No  |
|  Llama2  |       Yes       | Yes  |   Yes   |  Yes  |  No  |
| InternLM |       Yes       | Yes  |   Yes   |  Yes  |  No  |

### Pytorch

|  Models  | Tensor Parallel | FP16 | KV INT8 | W4A16 | W8A8 |
| :------: | :-------------: | :--: | :-----: | :---: | :--: |
|  Llama   |       Yes       | Yes  |   No    |  No   |  No  |
|  Llama2  |       Yes       | Yes  |   No    |  No   |  No  |
| InternLM |       Yes       | Yes  |   No    |  No   |  No  |

lvhan028's avatar
lvhan028 committed
63
64
## Performance

65
**Case I**: output token throughput with fixed input token and output token number (1, 2048)
lvhan028's avatar
lvhan028 committed
66

67
**Case II**: request throughput with real conversation data
lvhan028's avatar
lvhan028 committed
68

69
Test Setting: LLaMA-7B, NVIDIA A100(80G)
lvhan028's avatar
lvhan028 committed
70

71
72
The output token throughput of TurboMind exceeds 2000 tokens/s, which is about 5% - 15% higher than DeepSpeed overall and outperforms huggingface transformers by up to 2.3x.
And the request throughput of TurboMind is 30% higher than vLLM.
lvhan028's avatar
lvhan028 committed
73

74
![benchmark](https://github.com/InternLM/lmdeploy/assets/4560679/7775c518-608e-4e5b-be73-7645a444e774)
lvhan028's avatar
lvhan028 committed
75

lvhan028's avatar
lvhan028 committed
76
77
78
## Quick Start

### Installation
lvhan028's avatar
lvhan028 committed
79

80
Install lmdeploy with pip ( python 3.8+) or [from source](./docs/en/build.md)
lvhan028's avatar
lvhan028 committed
81
82

```shell
lvhan028's avatar
lvhan028 committed
83
pip install lmdeploy
lvhan028's avatar
lvhan028 committed
84
85
```

lvhan028's avatar
lvhan028 committed
86
### Deploy InternLM
lvhan028's avatar
lvhan028 committed
87

lvhan028's avatar
lvhan028 committed
88
#### Get InternLM model
lvhan028's avatar
lvhan028 committed
89
90

```shell
lvhan028's avatar
lvhan028 committed
91
# 1. Download InternLM model
lvhan028's avatar
lvhan028 committed
92

pppppM's avatar
pppppM committed
93
94
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
del-zhenwu's avatar
del-zhenwu committed
95
git clone https://huggingface.co/internlm/internlm-chat-7b /path/to/internlm-chat-7b
pppppM's avatar
pppppM committed
96
97
98
99
100

# if you want to clone without large files – just their pointers
# prepend your git clone with the following env var:
GIT_LFS_SKIP_SMUDGE=1

lvhan028's avatar
lvhan028 committed
101
# 2. Convert InternLM model to turbomind's format, which will be in "./workspace" by default
102
python3 -m lmdeploy.serve.turbomind.deploy internlm-chat-7b /path/to/internlm-chat-7b
lvhan028's avatar
lvhan028 committed
103
104
105

```

lvhan028's avatar
lvhan028 committed
106
#### Inference by TurboMind
lvhan028's avatar
lvhan028 committed
107
108

```shell
lvhan028's avatar
lvhan028 committed
109
python -m lmdeploy.turbomind.chat ./workspace
lvhan028's avatar
lvhan028 committed
110
111
```

112
113
114
115
116
117
118
> **Note**<br />
> When inferring with FP16 precision, the InternLM-7B model requires at least 15.7G of GPU memory overhead on TurboMind. <br />
> It is recommended to use NVIDIA cards such as 3090, V100, A100, etc.
> Disable GPU ECC can free up 10% memory, try `sudo nvidia-smi --ecc-config=0` and reboot system.

> **Note**<br />
> Tensor parallel is available to perform inference on multiple GPUs. Add `--tp=<num_gpu>` on `chat` to enable runtime TP.
lvhan028's avatar
lvhan028 committed
119

120
121
122
123
124
125
126
127
128
#### Serving with gradio

```shell
python3 -m lmdeploy.serve.gradio.app ./workspace
```

![](https://github.com/InternLM/lmdeploy/assets/67539920/08d1e6f2-3767-44d5-8654-c85767cec2ab)

#### Serving with Triton Inference Server
lvhan028's avatar
lvhan028 committed
129

lvhan028's avatar
lvhan028 committed
130
Launch inference server by:
lvhan028's avatar
lvhan028 committed
131
132

```shell
lvhan028's avatar
lvhan028 committed
133
bash workspace/service_docker_up.sh
lvhan028's avatar
lvhan028 committed
134
135
```

lvhan028's avatar
lvhan028 committed
136
Then, you can communicate with the inference server by command line,
lvhan028's avatar
lvhan028 committed
137
138

```shell
139
python3 -m lmdeploy.serve.client {server_ip_addresss}:33337
lvhan028's avatar
lvhan028 committed
140
141
```

lvhan028's avatar
lvhan028 committed
142
or webui,
AllentDan's avatar
AllentDan committed
143

vansin's avatar
vansin committed
144
```shell
145
python3 -m lmdeploy.serve.gradio.app {server_ip_addresss}:33337
AllentDan's avatar
AllentDan committed
146
147
```

148
For the deployment of other supported models, such as LLaMA, LLaMA-2, vicuna and so on, you can find the guide from [here](docs/en/serving.md)
lvhan028's avatar
lvhan028 committed
149

WRH's avatar
WRH committed
150
151
### Inference with PyTorch

152
For detailed instructions on Inference pytorch models, see [here](docs/en/pytorch.md).
153

WRH's avatar
WRH committed
154
155
156
#### Single GPU

```shell
WRH's avatar
WRH committed
157
python3 -m lmdeploy.pytorch.chat $NAME_OR_PATH_TO_HF_MODEL \
WRH's avatar
WRH committed
158
159
160
161
162
163
164
165
166
    --max_new_tokens 64 \
    --temperture 0.8 \
    --top_p 0.95 \
    --seed 0
```

#### Tensor Parallel with DeepSpeed

```shell
WRH's avatar
WRH committed
167
deepspeed --module --num_gpus 2 lmdeploy.pytorch.chat \
WRH's avatar
WRH committed
168
169
170
171
172
173
174
    $NAME_OR_PATH_TO_HF_MODEL \
    --max_new_tokens 64 \
    --temperture 0.8 \
    --top_p 0.95 \
    --seed 0
```

175
176
177
178
179
180
You need to install deepspeed first to use this feature.

```
pip install deepspeed
```

181
182
## Quantization

pppppM's avatar
pppppM committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
### Step 1. Obtain Quantization Parameters

First, run the quantization script to obtain the quantization parameters.

> After execution, various parameters needed for quantization will be stored in `$WORK_DIR`; these will be used in the following steps..

```
python3 -m lmdeploy.lite.apis.calibrate \
  --model $HF_MODEL \
  --calib_dataset 'c4' \             # Calibration dataset, supports c4, ptb, wikitext2, pileval
  --calib_samples 128 \              # Number of samples in the calibration set, if memory is insufficient, you can appropriately reduce this
  --calib_seqlen 2048 \              # Length of a single piece of text, if memory is insufficient, you can appropriately reduce this
  --work_dir $WORK_DIR \             # Folder storing Pytorch format quantization statistics parameters and post-quantization weight

```

### Step 2. Actual Model Quantization

`LMDeploy` supports INT4 quantization of weights and INT8 quantization of KV Cache. Run the corresponding script according to your needs.

#### Weight INT4 Quantization

LMDeploy uses AWQ algorithm for model weight quantization

> Requires input from the $WORK_DIR of step 1, and the quantized weights will also be stored in this folder.

```
python3 -m lmdeploy.lite.apis.auto_awq \
AllentDan's avatar
AllentDan committed
211
  --model $HF_MODEL \
pppppM's avatar
pppppM committed
212
213
214
215
216
217
218
  --w_bits 4 \                       # Bit number for weight quantization
  --w_group_size 128 \               # Group size for weight quantization statistics
  --work_dir $WORK_DIR \             # Directory saving quantization parameters from Step 1
```

#### KV Cache INT8 Quantization

219
In fp16 mode, kv_cache int8 quantization can be enabled, and a single card can serve more users.
tpoisonooo's avatar
tpoisonooo committed
220
First execute the quantization script, and the quantization parameters are stored in the `workspace/triton_models/weights` transformed by `deploy.py`.
221
222
223

```
python3 -m lmdeploy.lite.apis.kv_qparams \
pppppM's avatar
pppppM committed
224
225
226
227
  --work_dir $WORK_DIR \             # Directory saving quantization parameters from Step 1
  --turbomind_dir $TURBOMIND_DIR \
  --kv_sym False \                   # Whether to use symmetric or asymmetric quantization.
  --num_tp 1 \                       # The number of GPUs used for tensor parallelism
228
229
```

tpoisonooo's avatar
tpoisonooo committed
230
Then adjust `workspace/triton_models/weights/config.ini`
lvhan028's avatar
lvhan028 committed
231

lvhan028's avatar
lvhan028 committed
232
233
- `use_context_fmha` changed to 0, means off
- `quant_policy` is set to 4. This parameter defaults to 0, which means it is not enabled
lvhan028's avatar
lvhan028 committed
234

235
Here is [quantization test results](./docs/en/quantization.md).
236

237
> **Warning**<br />
tpoisonooo's avatar
tpoisonooo committed
238
> runtime Tensor Parallel for quantilized model is not available. Please setup `--tp` on `deploy` to enable static TP.
239

lvhan028's avatar
lvhan028 committed
240
## Contributing
lvhan028's avatar
lvhan028 committed
241

lvhan028's avatar
lvhan028 committed
242
We appreciate all contributions to LMDeploy. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
243

lvhan028's avatar
lvhan028 committed
244
245
246
## Acknowledgement

- [FasterTransformer](https://github.com/NVIDIA/FasterTransformer)
pppppM's avatar
pppppM committed
247
- [llm-awq](https://github.com/mit-han-lab/llm-awq)
lvhan028's avatar
lvhan028 committed
248
249
250
251

## License

This project is released under the [Apache 2.0 license](LICENSE).