llama_ckpt_convert.py 8.31 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright (c) OpenMMLab. All rights reserved.

import torch
import fire
import os.path as osp
from os import makedirs
from pathlib import Path
import safetensors
from typing import List
from tqdm import tqdm


def import_fb(ckpt_dir: str):
    checkpoints = []
    for pattern in ['*.pth', '*.pt']:
        checkpoints += sorted(Path(ckpt_dir).glob(pattern))
    print(checkpoints)
    n_ckpt = len(checkpoints)
    model_params = {}

    def get_param(name, size):
        print(name, size)
        if name not in model_params:
            model_params[name] = torch.zeros(
                size, dtype=torch.float16, device='cpu')
        return model_params[name]
    for i, ckpt_path in enumerate(checkpoints):
        ckpt = torch.load(ckpt_path, map_location='cpu')
        for param_name, param_data in ckpt.items():
            key = param_name.split('.')[-2]
            if key in ['w1', 'w3', 'wq', 'wk', 'wv', 'output']:  # column-parallel
                size = param_data.size(0)
                param = get_param(
                    param_name, [size * n_ckpt, param_data.size(1)])
                param.data[size * i: size * (i + 1), :] = param_data
            elif key in ['w2', 'wo', 'tok_embeddings']:          # row-parallel
                size = param_data.size(-1)
                param = get_param(
                    param_name, [param_data.size(0), size * n_ckpt])
                param.data[:, size * i: size * (i + 1)] = param_data
            elif i == 0:
                param = get_param(param_name, param_data.size())
                param.data = param_data
        del ckpt

    for name, param in model_params.items():
        # transpose all weights as FasterTransformer is expecting column-major weights
        # (output_dims, input_dims) -> (input_dims, output_dims)
        key = name.split('.')[-2]
        if key in ['w1', 'w3', 'wq', 'wk', 'wv', 'w2', 'wo']:
            param.data = param.data.t()

    # concat qkv projection
    for i in range(1000):
        _qkv = [f'layers.{i}.attention.{k}.weight' for k in ['wq', 'wk', 'wv']]
        try:
            qkv = tuple(map(model_params.pop, _qkv))
        except KeyError:
            break
        qkv = torch.stack(qkv, dim=1)
        model_params[f'layers.{i}.attention.w_qkv.weight'] = qkv
        print(qkv.shape, qkv.dtype)

    return model_params


def permute(x: torch.Tensor):
    SIZE_PER_HEAD = 128
    if x.shape[-1] > 1:  # qweights
        dim = x.shape[-1]
        n_heads = dim // SIZE_PER_HEAD
        return x.view(-1, n_heads, 2, dim // n_heads // 2).transpose(2, 3).reshape(-1, dim)
    else:  # scales, zeros
        dim = x.shape[0]
        n_heads = dim // SIZE_PER_HEAD
        return x.view(n_heads, 2, dim // n_heads // 2, 1).transpose(1, 2).reshape(dim, 1)


def check_zero(x: torch.Tensor):
    sum = x.flatten().sum().item()
    assert sum == 0, str(sum)


def import_gptq(path: str):
    model_params = {}

    _qweight = 'weight'
    _suffixes = [_qweight]
    n_split = 3
    if True:
        _params = {}
        for i in tqdm(range(0, n_split)):
            filename = "pytorch_model-{:05d}-of-{:05d}.bin".format(i + 1, n_split)
            _tmp = torch.load(osp.join(path, filename), map_location='cpu')
            _params.update(_tmp)
        # print('\n'.join(_params.keys()))
        def get_tensor(name):
            return _params[name]
        def get_tensor_transposed(name):
            return _params[name].t()

    # _qweight = 'qweight'
    # _suffixes = [_qweight, 'bias', 'scales', 'zeros']
    # with safetensors.safe_open(path, framework='pt') as f:
    #     get_tensor = f.get_tensor
    #     # quantized weights are already in column major, no need to transpose
    #     get_tensor_transposed = get_tensor
        for i in range(1000):
            try:
                # attention weights
                _qkvo = [f'model.layers.{i}.self_attn.{t}_proj' for t in 'qkvo']
                for suffix in _suffixes:
                    q, k, v, o = map(get_tensor_transposed, map(('{}.' + suffix).format, _qkvo))
                    if suffix == 'bias':
                        check_zero(q), check_zero(k), check_zero(v), check_zero(o)
                    else:
                        # q, k has different layout for fb & hf, convert to fb's layout
                        q = permute(q)
                        k = permute(k)
                        if suffix == _qweight:  # weight, qweight
                            # insert a dimension for splitting heads later
                            # qkv = torch.cat([q[:, None, :], k[:, None, :], v[:, None, :]], dim=1)
                            qkv = torch.stack((q, k, v), dim=1)
                        else:  # scales, zeros
                            # qkv = torch.cat([q[None, :], k[None, :], v[None, :]], dim=0).squeeze(dim=-1)
                            qkv = torch.stack((q, k, v), dim=0).squeeze(dim=-1)
                        for k, v in [('w_qkv', qkv), ('wo', o)]:
                            model_params[f'layers.{i}.attention.{k}.{suffix}'] = v
                # ffn weights
                _w123 = [f'model.layers.{i}.mlp.{t}_proj' for t in ['gate', 'down', 'up']]
                for suffix in _suffixes:
                    w1, w2, w3 = map(get_tensor_transposed, map(('{}.' + suffix).format, _w123))
                    if suffix == 'bias':
                        check_zero(w1), check_zero(w2), check_zero(w3)
                    else:
                        if suffix in ['scales', 'zeros']:
                            w1, w2, w3 = map(lambda x: x.squeeze(dim=-1), [w1, w2, w3])
                        for k, v in [('w1', w1), ('w2', w2), ('w3', w3)]:
                            model_params[f'layers.{i}.feed_forward.{k}.{suffix}'] = v
                other = [('attention_norm.weight', 'input_layernorm.weight'),
                         ('ffn_norm.weight', 'post_attention_layernorm.weight')]
                for ours, theirs in other:
                    model_params[f'layers.{i}.' + ours] = get_tensor(f'model.layers.{i}.' + theirs)
            except safetensors.SafetensorError:
                break
            except KeyError:
                break
            print(i)

        other = [('tok_embeddings.weight', 'model.embed_tokens.weight'),
                 ('norm.weight', 'model.norm.weight'),
                 ('output.weight', 'lm_head.weight')]
        for ours, theirs in other:
            model_params[ours] = get_tensor(theirs)

        return model_params


def export(model_params: dict, out_dir: str, n_inference: int):
    makedirs(out_dir, exist_ok=True)

    def save_bin(param: torch.Tensor, name):
        print(name, param.shape)
        if param.dtype in [torch.float, torch.bfloat16]:
            param = param.half()
        param.contiguous().numpy().tofile(osp.join(out_dir, name))

    # reverse the spliting axes since the weights are transposed above
    for param_name, param_data in model_params.items():
        split_dim = None
        key, ext = param_name.split('.')[-2:]
        copy = False
        if key in ['w1', 'w3', 'w_qkv']:
            split_dim = -1
        elif key in ['w2', 'wo']:
            if ext in ['scales', 'zeros']:
                copy = True
            else:
                split_dim = 0
        if split_dim is not None:
            print(f'*** spliting {param_name}, shape={param_data.shape}, split_dim={split_dim}')
            assert param_data.shape[split_dim] % n_inference == 0
            split_size = param_data.shape[split_dim] // n_inference
            splits = torch.split(param_data, split_size, dim=split_dim)
            for i, split in enumerate(splits):
                prefix, ext = osp.splitext(param_name)
                save_bin(split, f'{prefix}.{i}{ext}')
        elif copy:
            print(f'### copying {param_name}, shape={param_data.shape}')
            copies = [param_data] * n_inference
            for i, copy in enumerate(copies):
                prefix, ext = osp.splitext(param_name)
                save_bin(copy, f'{prefix}.{i}{ext}')
        else:
            save_bin(param_data, param_name)


def main(kind: str, input_path: str, out_dir: str, n_inference: int = 1):
    if kind == 'fb':
        model_params = import_fb(input_path)
    elif kind == 'gptq':
        model_params = import_gptq(input_path)
    else:
        raise RuntimeError(f'Unsupported kind: {kind}')

    export(model_params, out_dir, n_inference)


if __name__ == '__main__':
    fire.Fire(main)